Example 41



SweepDist


A bad example for algorithm: Almost matching zig-zags...
Curves # Vertices Length
P 15 11.800458401810024
Q 18 11.800511987488616

Distance Value Iters
Fréchet 0.15014659503298772 0
VE Fréchet 0.15014659503298772 240

Animation: Fréchet morphing

This is the animation of the morphing computed that is both continuous and monotone.


Animation: VE Retractable Fréchet

This is the animation of the VE retractable morphing. It is potentially not monotone (but it is continuous.


Free space diagram heatmap:


graph + free space [PDF] : graph [PDF]

With the grid


VE-Fréchet Retractable solution:


Monotonized...

Fréchet cont+monotone solution:


Discrete Fréchet

Generated by sampling 10 points along each edge...

The resulting morphing - extended to continuous:

Specifically, to get a smooth animation, the leash is shown as moving continuously, by interpolating between the discrete locations.


The discrete retractable version


The discrete dynamic time warping


P # vertices: 161
P # vertices: 164
DFréchet iters : 26404
Retract DFréchet iters : 512

Refinement for removing monotonicity

By introducing vertices in the middle of parts of the curves that are being traversed in the wrong direction, one can refine the solution, till effectively reaching the optimal monotone solution. This process is demonstrated below. As one can see, the error is negligible after a few (say four) iterations. After that, it becomes a bit pointless.
We emphasize that a monotone morphing can always be extracted, by monotonizing the current solution. This is easy and fast to do, and is the error accounted for in the below graphics.

More info

Animation: Fréchet morphing as morphing


2025-03-08 21:37:55