
The Fréchet Distance Unleashed: Approximating a Dog
with a Frog

December 3, 2024

Abstract

We show that a variant of the continuous Fréchet distance between polygonal curves
can be computed using essentially the same algorithm used to solve the discrete ver-
sion. The new variant is not necessarily monotone, but this shortcoming can be easily
handled via refinement.

Combined with a Dijkstra/Prim type algorithm, this leads to a realization of the
Fréchet distance (i.e., a morphing) that is locally optimal (aka locally correct), that
is both easy to compute, and in practice, takes near linear time on many inputs. The
new morphing has the property that the leash is always as short-as-possible. These
matchings/morphings are more natural, and are better than the ones computed by
standard algorithms – in particular, they handle noise more graciously. This should
make the Fréchet distance more useful for real world applications.

We implemented the new algorithm, and various strategies to obtain fast practical
performance. We performed extensive experiments on our new algorithm, and released
publicly available (and easily installable and usable) Julia and Python packages. In
particular, the Julia implementation, for computing the regular Fréchet distance,
seems to be significantly faster than other currently available implementations. See

 Figure 2.1 .
Links and information about our implementations are available here: frechet.xyz ,

with numerous detailed examples with animations are available here .

1. Introduction

1.1. Definitions
Given two polygonal curves, their Fréchet distance is the length of a leash that a person
needs, if they walk along one of the curves, while a dog connected by the leash walks along
the other curve, assuming they synchronize their walks so as to minimize the length of this
leash. (I.e. they walk so as to minimize their maximum distance apart during the walk.) Our
approach is slightly different than the standard approach, and we define it carefully first.

1

https://frechet.xyz
https://frechet.xyz/examples/

1.1.1. Free space diagram and morphings

Definition 1.1. For a (directed) curve π ⊆ Rd, its uniform parameterization is the bijec-
tion π : [0, ∥π∥] → π, where ∥π∥ is the length of π, and for any x ∈ [0, ∥π∥], the point π(x)
is at distance x (along π) from the starting point of π.

Definition 1.2. The free space diagram of two curves π and σ is the rectangle R = R(π, σ) =
[0, ∥π∥]×[0, ∥σ∥]. Specifically, for any point (x, y) ∈ R, we associate the elevation function
e(x, y) = ∥π(x) − σ(y)∥.

The free space diagram R is partitioned into a non-uniform grid, where each cell corre-
sponds to all leash lengths when a point lies on a fixed segment of one curve, and the other
lies on a fixed segment of the other curve, see Figure 1.1 . The sublevel set of the elevation
function inside such a grid cell is a clipped ellipse.
Definition 1.3. A morphing m between π and σ is a (not self-intersecting) curve m ⊆
R(π, σ) with endpoints (0, 0) and (∥π∥ , ∥σ∥). The set of all morphings between π and σ is
Mπ,σ. A morphing that is a segment inside each cell of the free space diagram that it visits,
is well behaved

1
 .

Intuitively, a morphing is a reparameterization of the two curves, encoding a synchronized
motion along the two curves. That is, for a morphing m ∈ Mπ,σ, and t ∈ [0, ∥m∥], this
encodes the configuration, with a point π

(
x(m(t))

)
∈ π matched with σ

(
y(m(t))

)
∈ σ.

The elevation of this configuration is e(t) = e(m(t)) =
∥∥∥π(x(m(t)

)
− σ

(
y(m(t)

)∥∥∥ .
1.1.2. Fréchet distance

Definition 1.4. The width of a morphing m between π and σ is ω(m) = maxt∈[0,∥m∥] e(t).
The Fréchet distance between the two curves π and σ is

dF(π, σ) = min
m∈M+

π,σ

ω(m),

where M+
π,σ ⊆ Mπ,σ is the set of all x/y-monotone morphings.

Conceptually, the Fréchet distance is the problem of computing the minimum bottleneck
matching between two curves, respecting the order and continuity of the curves.

2
 Alterna-

tively, it is an L∞-norm type measure of the similarity between two curves. It thus suffers
from sensitivity to outliers. Furthermore, even if only a small portion of the morphing re-
quires a long leash, the measure, and the algorithms computing it, may use this long leash in
large portions of the walk, generating a matching that is loose in many places, see Figure 1.2 .

Observe that the Fréchet distance is the minimum value such that the sublevel set of the
elevation function has an x/y-monotone path from (0, 0) to (∥π∥ , ∥σ∥) in R.

1All the morphings we deal with in this paper are well behaved.
2Formally, since the reparameterization is not one-to-one, this is not quite a matching. One can restrict

to using only such bijections, with no adverse effects, but it adds a level of tediousness, which we avoid for
the sake of simplicity of exposition.

2

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 1.1: Two curves, their free space diagram (and the associated elevation function), and
the optimal Fréchet morphing between the two curves encoded as an x/y-monotone curve.
More illustrations and animations of this example are available here .

The classical (discrete) Fréchet mor-
phing, caring only about the maxi-
mum leash length.

The retractable discrete Fréchet mor-
phing, using the shortest leash possi-
ble at each point.

Figure 1.2: A comparison between the classical and retractable Fréchet distances. Observe
that the morphing generated by the classical distance can be quite loose in many places. An
animation of both morphings is available here .

3

https://frechet.xyz/examples/09
https://frechet.xyz/examples/01

1.2. Background
Alt and Godau [AG95] presented a rather involved O(n2 log n) time algorithm to compute
the Fréchet distance using parametric search. The parametric search can be removed by us-
ing randomization, giving a simpler algorithm as shown in [HR14]. Buchin et al. [BBL+16]
presented an alternative algorithm for computing the Fréchet distance that replaces the de-
cision procedure by using a data-structure to maintain appropriate lower envelopes. Despite
some simplifications, all these algorithms are somewhat involved.

Unfortunately, it is believed this problem requires quadratic time in the worst case,
although a logarithmic speedup is possible; see [BBMM17] and references therein. The
quadratic time can be improved for realistic inputs by assuming that the input is “nice”,
and introducing approximation, but the resulting algorithms are still not simple [DHW12].

1.2.1. Variants of the Fréchet distance

Weak Fréchet distance. The weak Fréchet distance allows morphings where the
agents are allowed to go back and traverse portions of the curve visited previously (i.e.,
the morphing does not have to be x/y-monotone). Since the weak Fréchet distance allows
considering more parameterizations, it is potentially smaller, and we have that dw

F (π, σ) ≤
dF(π, σ), for any two curves π, σ. Elegantly, Alt and Godau [AG95] showed the weak Fréchet
distance can be reduced to computing the minimum spanning tree of an appropriate graph.
Unfortunately, there does not seem to be a natural way to overcome this non-monotonicity
(and thus get the “strong” version).

Discrete Fréchet distance. The complexity of these algorithms, together with sensitivity
of the Fréchet distance to noise, lead to using “easier” related measures, such as the discrete
version of the problem, and dynamic time-warping (discussed below). In the discrete version,
you are given two sequences of points p1, . . . , pn, and q1, . . . , qm, and the purpose is for two
“frogs” starting at p1 and q1, respectively, to jump through the points in the sequence until
reaching pn, qm, respectively, while minimizing the maximum distance between the two frogs
during this traversal. At each step, only one of the frogs can jump from its current location
to the next point in its sequence (no jumping back). Computing the optimal distance
under this measure can be done by dynamic-programming, similar to the standard approach
to edit-distance. Indeed, the configuration space here is the grid H = JnK × JmK, where
JnK = {1, . . . , n}.

To use the discrete version in the continuous case, one sprinkles enough points along
both input curves, and then solves the discrete version of the problem. Beyond the error
this introduces, to get a distance that is close to the standard Fréchet distance, one has to
sample the two curves quite densely in some cases.

For the (monotone) discrete Fréchet distance the induced graph on the grid H is a DAG,
and the task of computing the Fréchet distance is to find a minimum bottleneck path from
(1, 1) to (n,m), where the weights are on the vertices. Here, the weight on the vertex (i, j)
is the distance ∥pi − qj∥. In particular, a Fréchet morphing is an x/y-monotone path in H

4

from (1, 1) to (n,m). The standard algorithm to do this traverses the grid, say, by increasing
rows i, and in each row by increasing column j, such that the value at (i, j) is the maximum
of the length of the leash of this configuration, together with the minimum solution for
(i − 1, j) and (i, j − 1). This algorithm leads to a straightforward, O(nm) time algorithm
for the discrete Fréchet distance. However, the morphing computed might be inferior, see

 Figure 1.2 for such a bad example.

Retractable Fréchet. For simplicity, assume that the pairwise distances between all pairs
of points in the two sequences are unique. We would like to imagine that we have a retractable
leash, that can become shorter at times, and the leash “resists” being longer than necessary.
It is thus natural to ask for a morphing where the leash as short as possible at any point in
time.

Informally, the optimal retractable Fréchet morphing between the two sequences includes
the bottleneck configuration, realizing the Fréchet distance, in the middle of its path, and the
two subpaths from the endpoints to this configuration have to be also recursively optimal.
This is formally defined and described in Section 3.2 . This concept was introduced by
Buchin et al. [BBMS19]. Interestingly, they show that the discrete version can be computed
in O(nm) time, but unfortunately, the algorithm is quite complicated. They also show that
the continuous retractable Fréchet can be computed in O(n3 log n) time.

Buchin et al. [BBMS19] refers to this Fréchet distance as locally correct, but we prefer the
retractable labeling. The term “retractable Fréchet” was used by Buchin et al. [BBL+16],
but in a different (and not formally defined) context than ours.

(Continuous) Dynamic Time Warping. One way to get less sensitivity for noise is
to compute the total area “swept” by the leash as the walk is being performed. In the
discrete case, we simply add up the lengths of the leashes during the configurations in the
walk. There is also work on extending this to the continuous setting [MP99 , BBK+20]. For
the continuous case this intuitively boils down to computing (or approximating) an integral
along the morphing. See Section 5.5 for more details.

1.2.2. Critical events

The standard algorithm for computing the Fréchet distance works by performing a “binary”
search for the Fréchet distance. Given a candidate distance, it constructs a “parametric”
diagram that is a grid, where inside each grid cell the feasible region is a clipped ellipse. The
task is then to decide if there is an x/y-monotone path from the bottom left corner to the
top right corner, which is easily doable. The critical values the search is done over are:

(I) Vertex-vertex events: The distance between two vertices of the two curves,
(II) Vertex-edge events: The distance between a vertex of one curve, and an edge of the

other.
(III) Monotonicity events: This is the minimum distance between a point on one edge e of

the curves, and (maximum distance to) two vertices u, v of the other curve. Specifically,

5

it is realized by the point on e with equal distance to u and v.
The first two types of events are easy to handle, but the monotonicity events are the bane
of the algorithms for the Fréchet distance.

1.2.3. Algorithm engineering the Fréchet distance

Given the asymptotic complexity and involved implementations of the aforementioned al-
gorithms, there has been substantial work on practical aspects of computing the Fréchet
distance. In particular, in 2017, ACM SIGSPATIAL GIS Cup had a programming challenge
to implement algorithms for computing the Fréchet distance. See [WO18] for details.

More recently, Bringmann et al. [BKN21] presented an optimized implementation of the
decider for the Fréchet distance. Somewhat informally, Bringmann et al. [BKN21] builds a
decider for the Fréchet distance using a kd-tree over the free space diagram, keeping track
of the reachable regions on the boundary of each cell, refining cells by continuing down the
(virtual) kd-tree if needed.

1.3. Our results

1.3.1. Result I: A new algorithm for retractable discrete Fréchet

We observe that a natural approach to compute the retractable Fréchet morphing is to
modify Dijkstra’s/Prim’s algorithm so that it solves the minimum bottleneck path problem.
This observation surprisingly seems to be new, and leads to a simpler (but log factor slower)
algorithm for computing it. The only modification of Dijkstra necessary is that one always
handles the cheapest edge coming out of the current cut induced by the set of vertices
already handled. (In the discrete Fréchet case, the weights are on the vertices, but this is a
minor issue.) This modified version of Dijkstra is well known, but we include, for the sake
of completeness, the proof showing that it indeed computes the recursively optimal path,
which is also a retractable Fréchet morphing between the two sequences. This immediately
leads to better and more natural morphings, see Figure 1.2 .

Maybe more importantly, in practice, one does not need to explore the whole space of nm
configurations (since we are in the discrete case, a configuration (i, j) ∈ JnK × JmK encodes
the matching of pi with qj), as the algorithm can stop as soon as it arrives at the destination
configuration (n,m). Informally, if the discrete Fréchet distance is “small” compared to the
vast majority of pairwise distances (i.e., the two sequences are similar), then the algorithm
only explores a small portion of the configuration space. Thus, this leads to an algorithm that
is faster than the standard algorithm in many natural cases, while computing a significantly
better output morphing.

1.3.2. Result II: A new distance and algorithm: VE-Fréchet

It is not clear how to extend the above to the continuous case. A natural first step is to
consider the continuous Fréchet distance, where one restricts the solution inside each cell

6

Figure 1.3: Two curves, and their associated VE-Fréchet graph. Note, that every internal
edge of the grid contains a portal (i.e., vertex of the graph), but in many cases the portals
of two edges are co-located on their common vertex. For the edges adjacent to the starting
and ending corners we set their portals to lie at the corners themselves. See here for more
info.

of the free space diagram to be a segment (which is already the case for the morphings
computed by existing algorithms), but more importantly, insisting that the shape of this
segment must be determined only locally, thus facilitating a greedy strategy compatible
with the retractable approach. In practical terms, we throw away the (global) monotonicity
events.

Traveling only through vertex-edge events. Because of the continuity and strict con-
vexity of the elevation function, the function has a unique minimum on each edge of the free
space diagram grid – geometrically, this is the minimum distance between a vertex of one
curve, and an edge of the other curve (a vertex-edge event). We restrict our solution to enter
and leave a cell only through these portals (which are easy to compute). The continuous
configuration space now collapses to a discrete graph that is somewhat similar to the natural
grid graph on JnK × JmK. Indeed, a grid cell has four portals on its boundary edges. Specif-
ically, there are directed edges from the portal on the bottom edge, to the portal on the top
and right edges of the cell. Similarly, there are edges from the portal on the left edge, to the
portals lying on the top and right edges. As before, the values are on the portals, and our
purpose is to compute the optimal bottleneck path in this grid-like graph. Examples of this
graph are depicted in Figure 1.3 , Figure 4.1 and Figure 4.2 .

Remark 1.5. A somewhat similar idea was used by Munich and Perona [MP99], but they
used it in the other direction – namely, in defining a better CDTW distance for two discrete
sequences. However, this idea was already present (implicitly) in the original work of Alt
and Godau [AG95] – indeed, their algorithm for the Weak Fréchet distance uses only the
Vertex-Edge events (i.e., edges in the free space diagram). This boils down to solving the
bottleneck shortest path problem in an undirected graph. In this case, this problem can
be solved by computing the minimum spanning tree (e.g., by Prim’s algorithm, which is
a variant of Dijkstra’s algorithm), as Alt and Godau do. For the directed case, one needs

7

https://frechet.xyz/examples/10

to use a variant of Dijkstra’s algorithm [GT88] – see Lemma 3.2 . See also Buchin et al.
[BBD+17] who also used a similar idea.

We can now run the retractable bottleneck shortest-path algorithm (i.e., the variant of
Dijkstra described above) on this implicitly defined graph computing the vertices and edges
of it, as they are being explored. For many natural inputs, this algorithm does not explore
a large fraction of the configuration space, as it involves distances that are significantly
larger than the maximum leash length needed. The algorithm seems to have near linear
running time for many natural inputs. The VE-Fréchet morphing is the one induced by
the computed path in this graph. Unfortunately, the VE-Fréchet morphing might allow
the agents to move backwards on an edge, but importantly, the motion across a vertex is
monotone. Namely, the VE-Fréchet is monotone for vertices, but not necessarily monotone
on the edges. A vertex is thus a checkpoint that once passed, cannot be crossed back.

1.3.3. Result III: New algorithm for the regular Fréchet distance

The natural question is how to use the (easily computable) VE-Fréchet morphing to compute
the optimal (regular) continuous Fréchet distance. We next describe how this can be done
in practice.

The hunt for a monotone morphing. We denote the VE-Fréchet distance between two
curves π and σ by dve

F (π, σ). Clearly, we have that dw
F (π, σ) ≤ dve

F (π, σ) ≤ dF(π, σ).
One can of course turn any morphing into a monotone one by staying put instead of

moving back. This is appealing for VE-Fréchet, as the corresponding VE morphing m, say
between two curves π and σ, never backtracks over vertices (only edges), so we already expect
the error this introduces to be relatively small. Let m+ denote the monotone morphing
resulting from this simple strategy. Observe that

ω(m) = dve
F (π, σ) ≤ dF(π, σ) ≤ ω(m+).

In particular, if ω(m) = ω(m+), then dF(π, σ) is realized by m+, and we have computed
the Fréchet distance between π and σ.

A less aggressive approach is to introduce new vertices in the middle of the edges of π
and σ as to enforce monotonicity. Indeed, clearly, if we refine both curves by repeatedly
introducing vertices into them, the VE-Fréchet distance between the two curves converges
to the Fréchet distance between the original curves, as introducing a vertex in the middle
of an edge does not change the regular Fréchet distance, while preventing the VE-Fréchet
morphing from backtracking over this point.

We refer to this process of adding vertices to the two curves as refinement. In practice,
in many cases, one or two rounds of (carefully implemented) refinement are enough to isolate
the maximum leash in the morphing from the non-monotonicity, and followed by the above
brute-force monotonization leads to the (practically) optimal Fréchet distance. Even for
pathological examples, after a few more rounds of refinement, this process computes the exact

8

Figure 1.4: For these two curves, the solution involves an agent stopping at one point on
one curve while the other agent traverses is zig-zag, and vice versa. The algorithm enforces
monotonicity by refining the two curves by introducing new vertices. For the results, see

 here .

Fréchet distance. That is, the computed lower bound, which is the VE-Fréchet distance, is
equal to the width of the computed monotone morphing, which is the Fréchet distance.

Remark 1.6 (Floating point issues). As we are implementing our algorithm using floating point
arithmetic, and the calculation of the optimal Fréchet distance involves distances, imprecise-
ness is unavoidable. A slight improvement in preciseness can be achieved by using squared
distances (and also slightly faster code) — but for simplicity we have not used this idea in
our code. In particular, we take the somewhat pragmatic view, that an approximation to
the optimal up to a factor of (say) 1.00001 can be considered as computing the “optimal”
solution.

Note that Fréchet morphings are somewhat less sensitive to numerical issues than other
geometric problems — indeed, once a morphing is computed, one can compute its width
directly.

1.3.4. Result IV: Computing the Fréchet distance quickly for real inputs

The above leaves us with a natural strategy for computing the Fréchet distance between
two given curves. Compute quickly, using simplification, a morphing between the two input
curves, and maintain (using VE-Fréchet, for example) both upper and lower bounds on the
true Fréchet distance. By carefully inspecting the morphing, (re)simplifying the curves in a
way that is sensitive to their (local) Fréchet distance, and recomputing the above bounds, one
can get an improved morphing. Repeat this process potentially several times till the upper
and lower bounds meet, at which point the optimal Fréchet distance has been computed.

This seems somewhat overkill, but it enables us to compute (in practice) the exact Fréchet
distance between huge polygonal curves quickly.

1.3.5. Main contribution: Implementation in Julia and Python

We implemented the above algorithms as official packages in Python and Julia. A webpage
with animations showing our algorithm in action is available here . The Python package
is available at https://github.com/eliotwrobson/FrechetLib , and the Julia package is

9

https://frechet.xyz/examples/06
https://frechet.xyz/
https://github.com/eliotwrobson/FrechetLib

available at https://github.com/sarielhp/FrechetDist.jl . Animations and examples
computed by the new algorithm are available at https://frechet.xyz/ .

1.3.6. Additional results

Sweep distance. We demonstrate how one can convert our algorithm for computing VE-
Fréchet to an algorithm that computes a variant of the CDTW distance, which we call the
sweep distance. One can then use refinement to approximate the CDTW distance. One
can also compute a lower bound on this quantity, and the two quantities converge. See

 Section 5.5 for details.

Fast simplification. We show how to preprocess a curve π with n vertices, in O(n log n)
time, such that given a query w, one can quickly extract a simplification of π of π, such
that dF(π, π) ≤ w. Importantly, the time to extract π is proportional to its size (i.e., the
extraction is output sensitive). More importantly, in practice, this works quite well – the size
of |V (π)| is reasonably close (by a constant factor) to the optimal approximation. Combined
with greedy simplification, this yields a very good simplification result. See Section 5.6 for
details.

1.4. Significance
We demonstrate in this paper that a minor variant of the continuous Fréchet distance can
be computed by a strikingly simple Dijkstra type algorithm. Furthermore, for many real
world inputs it runs in near linear time (out of the box). Similarly, for many real world
inputs the computed morphing is monotone, thus realizing the (standard) Fréchet distance.
More importantly, because of the retractable nature of the morphing computed, the matching
computed is more natural, and can handle noise/outliers more gracefully than the match-
ings computed by the current algorithms for the Fréchet distance. Indeed, areas that are
noise/outliers, get isolated in the morphing to a small interval, that can be easily identified
and handled, see Figure 1.2 . We believe that this makes the morphings computed by our
new algorithms significantly better for real world applications than previous algorithms.

We then show how to modify this algorithm to compute the (monotone) Fréchet distance
(in cases when the morphing was not already monotone), and how to make it handle large
inputs quickly via simplifications (handling all the technical difficulties this gives rise to).

Finally, we implemented our new algorithms in Julia and Python, and made them
publicly available as standard packages, thus making the computation of the Fréchet distance
accessible to a wider audience. Using such packages in Python/Julia is significantly easier
than using any not pre-compiled code in C++.

Summary. The combination of simplification, new (and not so new) algorithmic ideas
(such as retractablity via Dijkstra, and VE-Fréchet, among others), and careful implemen-
tation, leads to fast performance in practice beating other implementations. We discuss our

10

https://github.com/sarielhp/FrechetDist.jl
https://frechet.xyz/

implementation next — the algorithmic ideas described above are covered in detail in the
appendices.

2. Implementation and experiments
To demonstrate the practicality of our techniques, we have developed open-source packages
that implement our algorithms. Our implementations follow the ideas described in the
paper – aggressively using simplification, and upper/lower bound computations to guarantee
we computed the optimal Fréchet distance. Furthermore, because our algorithms use the
retractable VE-Fréchet as our building block, the Fréchet morphings our implementation
computes look better than what the standard Fréchet algorithms would return.

To see numerous animations and more information, the reader is encouraged to visit the
(anonymized) site: https://frechet.xyz .

Total RT in seconds
Dataset # pairs avg # points C++ Julia Julia MT C++/Julia
sigspatial 322, 000 247.8 145 102 25 1.42
Characters 253, 000 120.9 90 72 18 1.25
Geolife 322, 000 1080.4 646 70 30 9.22

All tests combined 881 244 73 3.61

Figure 2.1: Julia/C++ comparison, demonstrating that the Julia implementation is signifi-
cantly faster. The C++ implementation is from Bringmann et al. [BKN21]. Running times are
in seconds. Julia MT stands for the multi-threaded implementation – since multi-threading
is easy in Julia, and the task at hand is easily parallizable, we tested this, but of course this
should not be taken as a direct (or remotely fair) comparison to the C++ implementation,
and is provided for the reader amusement. In particular, the multi-threading done is pretty
naive, and better performance should be possible by better fine-grained partition of the tasks.
The tests were performed on a Linux system with 64GB memory with Intel i7-11700 CPU,
with a decent 16 threads CPU, but far from the fastest hardware currently available. The
“# pairs” column is the number of pairs of curves that had their Fréchet distance compared
during this test. The “avg # points” is the average number of vertices per curve in this
input set – underlying the benefit of simplification for the GeoLife input set.

2.1. Hardware and Implementations
The tests were all performed on a Linux system with 64GB of memory and an Intel i7-11700
CPU with 16 threads. This system is a fast desktop, but far from the best possible hardware
currently available. We were also able to perform development for the experiments on a
laptop with substantially weaker hardware, giving anecdotal evidence of the scalability of

11

https://frechet.xyz

our algorithms. We use several real-world datasets featured in prior works to demonstrate
the effectiveness of our algorithm.

Here, we discuss the individual implementations used in our experiments. The first two
(Julia and Python) use the algorithmic techniques discussed in this work. The third is by
Bringmann et al. [BKN21] written in C++, which uses completely different algorithmic ideas.
We refer to each implementation by language for convenience, although our tasks are meant
to evaluate effectiveness of the algorithmic approaches.

2.1.1. Julia

The Julia code is about 5000 lines for the library, and an additional 5000 for the exam-
ples/testing code. It implements the algorithms described here faithfully, with some addi-
tional hacks to handle floating point issues. Julia has (surprisingly easy to use) support
for multi-threading (unlike C++ or Python), and we tested also a multi-threaded version
(this is shown in the MT column in Figure 2.1). The anonymized code is available from

 https://frechet.xyz/ , including instructions how to replicate our tests.
The Julia package is available at https://github.com/sarielhp/FrechetDist.jl .

Animations and examples computed by the Julia code are available at https://frechet.
xyz/ .

Julia low-level optimizations. We were able to significantly improve the performance
of the Julia code using some standard low-level optimizations: (i) Julia performs inlining
code automatically, but explicitly forcing it to inline some low-level key functions (such
as computing the distance between two points), improved the performance measurably (>
10%). Julia also has high overhead for creating structs that get destroyed immediately
(essentially because it allocates them on the heap, instead of the stack like C++). Thus, by
rewriting the code so that computing the distance of a point from a segment is done directly
on the endpoints of the segment (where the segment is an edge of a polygon) also improved
performance. Caching simplifications, so that one can extract/compute new simplification
quickly, among other ideas, see Section 5.6 , were useful in creating fast code.

One allocation to rule them all. Since Julia performance suffers when a lot of dynamic
allocations are done (because of the automatic garbage collection), it turned out that im-
plementing the retractable VE-Fréchet without using hashing (for the vertices of the graph)
resulted in much faster code. To this end, one pre-allocates a quadratic size array represent-
ing the vertices of the grid (but exploring only the relevant portions of the grid/this array)
— this works because the allocation/initialization of this (single!) array is extremely fast.
This seems to yields significant speedups somewhere up to ten times faster than the hashing
version, depending on the input (for large inputs, the two implementations seem to have
similar running times).

12

https://frechet.xyz/
https://github.com/sarielhp/FrechetDist.jl
https://frechet.xyz/
https://frechet.xyz/

2.1.2. Python

For the Python implementation, we represented curves using NumPy arrays [HMW+20],
where each row in the array is a single point on the input curve. This representation is
memory efficient and allows for fast computations of distances between points using library
primitives. We also made heavy use of Numba [LPS15] to further improve performance, as
many of the algorithms discussed in this work are iterative and thus easy to accelerate using
the library.

Numerical Issues. Although not exclusive to this implementation, the Python code suf-
fers from some issues related to numerical precision. Specifically, this implementation strug-
gles with underflow of floating point numbers, which seems to occur in situations where
consecutive points are too close in the input data (i.e., the distance between points is too
small). However, this doesn’t represent a meaningful distance between these points, and this
can be resolved by adding simplification as a preprocessing step (such as the algorithm in

 Section 5.6).
Our experiments are meant to emphasize the performance of our algorithmic techniques,

and we do not have any tasks specifically designed to evaluate issues with floating point
numbers or methods which can be used to combat this problem. In particular, we did not
encounter these issues in any significance with the datasets mentioned in this work. This is
a potential avenue for future work if given data that encounters these issues frequently.

2.1.3. C++

The C++ implementation is provided by Bringmann et al. [BKN21], which seems to be the
state of the art (they claim to be faster than any previously available implementation). The
algorithm uses completely different algorithmic techniques to those of this work, providing
a point of comparison for the scalability of our implementations.

Informally, the implementation of Bringmann et al. [BKN21] builds a decider for the
Fréchet distance using a kd-tree over the free space diagram, keeping track of the reachable
regions on the boundary of each cell, refining cells by continuing down the (virtual) kd-tree
if needed.

Note, that unlike Bringmann et al. [BKN21], our implementation can compute the exact
Fréchet distance — although in some cases, because of numerical issues the “exact” results
are just (high quality) approximations, see Remark 1.6 .

2.2. Experiments
To compare the implementations, we performed benchmarks using two different tasks using
real-world datasets. These were selected to determine the scalability of the algorithms rel-
ative to the large size of real-world data. This section is organized by the different tasks
performed.

13

2.2.1. Direct Fréchet distance computations

To compare the Julia and Python implementations of our algorithms, we directly computed
the Fréchet distance at different levels of approximation using our algorithms.

This was done on individual pairs of curves selected from different datasets. Specifically,
we use curves taken from the GeoLife dataset [ZFX+11] (as used in [BKN21]), a stork
migration dataset [RKT+18b], (retrieved from Movebank [RKT+18a], used in [BBK+20]),
and a pigeon flight dataset [PGR+17]. Figure 2.2 lists the individual curves from each
dataset used in our benchmarks.

We do not perform any type of transformations on the input data (to reduce aberration
due to Earth’s curvature, for example), as we are primarily interested in the execution speed
of our algorithm.

See Figure 2.4 and Figure 2.3 for the results (observe that the Julia code was tested
for 1.001 approximation – we have not done the same for the Python code, since it was
numerically unstable in this case). The Python performance on these datasets is competitive
with the Julia implementation, although in some cases significantly slower. In general, the
Julia implementation is faster (we did not perform enough experiments to decide how much
faster), but it is clear that the Python implementation is fast and robust enough to be used
in practice. The runtimes also do not include the Numba JIT compilation times.

Specifically, the slow performance observed on some test cases for the Python implemen-
tation may be caused by using sub-optimal data structures for some simplification tasks. We
hope to improve this performance in further development of this implementation.

2.2.2. Fréchet Decider

We compared our implementation performance in Julia to the C++ implementation. We eval-
uated our implementations with the same benchmarking task as Bringmann et al. [BKN21],
using the provided code that downloads and generates Fréchet distance tests. We emphasize
that this task and datasets were introduced prior to to this work, and were not selected to
be favorable to the techniques introduced here.

This task used curves from three datasets; the dataset from the SIGSPATIAL GIS Cup
[WO18], a dataset of handwritten characters (Characters) [Wil08], and the GeoLife dataset
[ZFX+11]. Each dataset is composed of numerous input curves, and then a list of pairs
of curves together with a threshold, and the goal is to decide whether the Fréchet distance
is above/below/equal to this threshold. See Figure 2.1 . This task is naturally friendly to
simplifications – we implemented a fast simplification data-structure. We iteratively simplify
the two curves being compared to progressively finer resolutions, comparing them using the
(monotonized) VE-Fréchet distance. If the comparison is outside the error interval, the result
is returned, otherwise, the algorithm goes to the next finer resolution.

The GeoLife [ZFX+11] dataset benefits tremendously from the simplification strategy,
and the Julia implementation is more than 9 times faster than the C++ code, see Figure 2.1 .
The worst dataset for the Julia implementation is the characters dataset [Wil08] where it
seems to be about 25% faster than the C++ code. This dataset both does not benefit from

14

simplification, and also seems to give rise to many non-monotone morphings. The Sigspatial
seems be somewhat resistant to approximation, and our code is only about 40% faster than
the C++ code in this case. We emphasize that each test in Figure 2.1 involves the execution
of well over > 250, 000 runs of the algorithm for different curves, so these results seems quite
representative of real world performance.

As for the general C++ vs Julia performance comparison, this seems to be case dependent,
with reported cases where either is faster. The common belief is that a careful enough
implementation in C++ would be faster from Julia implementation (i.e., some of Julia
libraries are implemented in C++).

In particular, the significant speed (646 seconds vs 70) improvement in the case of the
GeoLife input suggests our algorithm is much faster in cases of longer curves where sim-
plification really helps. Note that while our code in Julia uses a single thread, it uses an
automatic garbage collector that runs in parallel threads.

2.3. Discussion
Overall, it is clear that our Julia implementation is faster than other currently available
implementations for computing the Fréchet distance. Beyond that Julia seems like a great
programming language to develop geometric algorithms — providing a combination of a safe,
multi-threaded, high-level programming language with the performance of C++, without the
pain involved in working in C++.

One optimization used by the Julia code, that should be generally useful, is the following.
As a preprocessing step, precompute a hierarchy of simplified curves for each input curve.
This improves the query process, but makes the preprocessing more expensive. Thus, storing
such precomputed hierarchies might be a good idea if input curves are going to be used
repeatedly for performing distance queries. We emphasize that the reported running times
include this (light) preprocessing stage (interestingly, the SIGSPTIAL [WO18] competition
allowed such preprocessing to not be included in the overall running time).

Input Description
1 birds: 1787 1 / 1797 1
2 birds: 2307 3 / 2859 3
3 birds: 2322 2 / 1793 4
4 GeoLife 20080928160000 / 20081219114010
5 GeoLife 20090708221430 / 20090712044248
6 Pigeons RH887 1 / RH887 11
7 Pigeons C369 5 / C873 6
8 Pigeons C360 10 / C480 9

Figure 2.2: The inputs tested and where they are taken from, birds referring to the stork
migration dataset [RKT+18a], the GeoLife dataset [ZFX+11], and Pigeons referring to a
dataset from [PGR+17].

15

Input P # Q # ≈4 ≈1.1 ≈1.01 ≈1.001 Exact VER
1 10,406 11,821 0.106 0.256 4.164 16.639 0.476 27.743
2 16,324 14,725 0.114 0.428 0.985 4.762 3.522 19.734
3 22,316 4,613 0.151 0.651 1.207 3.262 0.882 7.138
4 56,730 91,743 0.578 1.207 4.215 28.109 4.259 ---
5 6,103 9,593 0.043 0.040 0.305 0.519 0.484 5.678
6 2,702 1,473 0.034 0.084 1.367 1.387 0.160 1.081
7 1,068 1,071 0.026 0.066 0.048 0.049 0.044 0.011
8 864 1,168 0.018 0.044 0.142 0.124 0.069 0.080

Figure 2.3: Julia performance on various inputs. All running times are is seconds. The #
columns specify the number of vertices in each input. The single missing running time is for
a case where the program ran out of memory. The quality of approximation is in the title
of the column. The VER column is for running the VE-Fréchet (retractable) algorithm on
the original input curves, which is much slower than the exact algorithm, which computes
the exact Fréchet distance, but uses simplification internally for speed.

Input P # Q # ≈4 ≈1.1 ≈1.01 Exact VER
1 10,400 11,815 0.071 0.250 5.372 0.593 92.869
2 16,318 14,719 0.091 0.240 1.142 69.525 66.844
3 22,310 4,607 0.087 0.232 1.041 49.426 25.032
4 56,730 91,743 0.307 0.563 1.892 2.390 ---
5 6,103 9,593 0.042 0.032 0.175 3.657 19.618
6 2,696 1,467 0.077 0.294 4.913 2.946 283.538
7 1,062 1,065 0.145 0.275 0.455 0.666 382.455
8 858 1,162 0.034 0.100 1.537 0.159 0.709

Figure 2.4: Python performance in seconds on the inputs given in Figure 2.2 . The missing
runtime is for a case where the test code ran out of memory.

3. The retractable Fréchet distance

3.1. The retractable path in a directed graph
Let G = (V,E) be a directed graph with n vertices and m edges, with weights w : E → R on
the edges (assume for simplicity of exposition that they are all distinct). Consider a simple
path π in G. The bottleneck of π is b(π) = maxe∈π w(e). For any two vertices s and t in
G, let Π(s, t) denote the set of all simple paths from s to t in G. The bottleneck distance
between s and t is dB(s, t) = minπ∈Π(s,t) b(π). The unique edge, (under our assumption of
distinct weights on the edges), that realizes dB(s, T) is the bottleneck edge of s and t,
denote by b(s, t).

16

Literature on computing the bottleneck edge/path. This variant of the problem
is a min max, which is equivalent to the max min (maximize cheapest edge on the path)
via negation of the prices of edges. If the edges are sorted, then computing the bottleneck
edge can be done in linear time. Dijkstra can be modified to solve this problem [CKT+16],
in O(n log n + m) time. Similarly, the problem is readily solvable in linear time if the
underlying graph is a DAG. Gabow and Tarjan [GT88] showed an algorithm with running
time O(m log∗ m), and some minor further improvements are known [CKT+16].

A path that is bottleneck-optimal for subpaths. Here, we study the following harder
variant of the bottleneck problem.

Definition 3.1. For two vertices s, t of a directed graph G with distinct weights on its edges,
the retractable path from s to t, is the unique path that contains the edge b(s, t) = u → v,
and furthermore, the subpath from s to u, and from v to t are both retractable.

Importantly, we are interested in computing the retractable path itself (not just the bottle-
neck). Confusingly, and this is not immediate to see, the standard dynamic programming
algorithm for DAGs does not work in this case.

Modifying Dijkstra. It is not hard to see that a minor simplification to Dijkstra’s algo-
rithm, started from s, leads to a O(n log n+m) time algorithm for computing the retractable
tree, containing the retractable paths from s to all the vertices in G (we assume here that
all of G is reachable from s). Indeed, if C is in the current set of vertices already visited, the
algorithm always handles the next cheapest edge in the directed cut (C, V \C). As in Dijk-
stra’s algorithm, one can maintain a variable d(v), to store the weight of cheapest edge from
a vertex already visited to the (yet unvisited) vertex v. Setting d(v) = min(d(v),w(u → v))
when handling the edge u → v, records this information. Under this vertex based account-
ing, the algorithm always next handles the vertex with minimum d value that is not yet
visited (and these values can be maintained in a heap). Gabow and Tarjan [GT88] described
how to modify Dijkstra to solve the bottleneck problem – what we point in the next lemma
is that it is somewhat stronger – it computes the retractable path.

Lemma 3.2. The above algorithm computes a directed tree T rooted at s, such that for any
vertex u, the path in T from s to u is retractable. The running time of the algorithm is
O(n log n+m).

Proof: The running time follows as the algorithm performs O(m) decrease-keys and O(n)
delete-min operations, which take O(1) and O(log n) time respectively if using a Fibonacci
heap.

As for correctness – we analyze a somewhat slower implementation of the algorithm (i.e.,
this is a variant of Prim’s algorithm using cuts). The algorithm repeatedly handles the
cheapest edge not handled yet that is in the directed cut (C,C)

3
 , where C is the set of

3(C, C) = {u → v ∈ E(G) | u ∈ C, v ∈ V (G) \ C}.

17

Figure 3.1: Close encounters of the Fréchet type: An example of two curves (from Geolife
GPS tracks) that are made out of 547 vertices, such that their retractable discrete Fréchet
distance was computed by visiting only 1, 144 edges, while the whole diagram has 74, 236
distinct cells. For more details, follow this link . Informally, for examples where the Fréchet
distance is dramatically smaller than the diameter of the curves, the retractable Fréchet
distance (discrete or continuous) is computed by the new algorithm in near linear time.

vertices visited so far. Initially, C = {s} and the min-heap is initialized to hold the set
(C,C). The algorithm now repeatedly extracts the minimum edge u → v in the heap. If
v ∈ C, then the algorithm continues to the next iteration. Otherwise, the algorithm marks
the v as visited, and adds all the outgoing edges from v to the heap. It is easy to verify (by
induction) that this slower algorithm, and the algorithm described above compute the same
bottleneck-tree.

As for the correctness of the slower algorithm – the proof is by induction on the number
of edges of the retractable path. Consider the case that the retractable path is of length one
– namely, the edge e = s → u. Let w = w(e). Clearly, before the algorithm handles e, all
the weights being handled are strictly smaller than e, and thus the algorithm can not arrive
to u. Since e is scheduled by the algorithm, the claim readily follows.

So, consider a retractable path π from s to u that contains more than one edge, and let
e = x → y be its bottleneck edge. Let w = w(e). Observe that the algorithm would handle
all the edges of π before handling any edge with strictly larger weight than w. As such,
for our purposes, assume that e is the heaviest edge in the graph. Let S be all the vertices
visited just before e was handled, and let T = V \ S. Consider the two induced graphs GS

and GT , and observe that one can apply induction to both parts, separately, as there are no
edges except e between the two parts (there might be edges going “back”, but these can be
ignored, as the vertices of S were already handled by the algorithm). It thus follows that
the algorithm computed π as the desired path.

3.2. The retractable discrete Fréchet distance

3.2.1. The discrete Fréchet distance

Let π = p1, . . . , pn and σ = q1, . . . , qm be two sequences of points in some normed space.
Conceptually, we have two agents starting at p1 and q1 respectively. During an atomic time
interval, one of them can jump forward to the next point in the sequence (one can allow
both to jump forward in the same time, but we disallow it for the sake of simplicity of
exposition). In the end, both agents have to arrive to pn and qm, respectively, and our
purpose is to minimize the maximum distance between them during this motion.

Definition 3.3. Consider two sequences π = p1, . . . , pn and σ = q1, . . . , qm, a discrete mor-
phing is an x/y-monotone path τ = (1, 1), . . . , (n,m) in the grid graph defined over the set

18

https://frechet.xyz/examples/12/

of points U = JnK × JmK from (1, 1) to (n,m). For a vertex (i, j) ∈ U , let h(i, j) = ∥piqj∥ be
its associated weight. The path τ is restricted to vertical and horizontal edges of the grid.
The width of τ is ωπ,σ(τ) = max(i,j)∈V (τ) h(i, j). The discrete Fréchet distance between
π and σ is the minimum of width of any morphing between the two sequences.

3.2.2. The retractable discrete Fréchet distance

Definition 3.4. Let τ = z1, . . . , zn+m−1 ∈ U be a discrete morphing between two sequences
π = p1, . . . , pn and σ = q1, . . . , qm. Let D(i, j) = maxk:i<k<j h(zk) be the inner width of
the morphing τ(i, j) = zi, zi+1, . . . , zj. For simplicity assume all pairwise distances ∥piqj∥
are distinct. The unique point b(i, j) realizing the minimum D(i, j), overall possible grid
monotone paths τ ′ between zi and zj, is the bottleneck between i and j. The retractable
discrete Fréchet morphing between π and σ is the unique morphing τ , such that

(i) z1 = (1, 1), zn+m−1 = (n,m), and
(ii) for all i < j, we have b(i, j) ∈ τ(i, j).

Although the weights here are defined on the vertices, it is easy enough to interpret
them as being on the edges (by for example, assigning a grid edge z → z′ the weight
max(h(z),h(z′)). Plugging this (implicit) graph into Lemma 3.2 readily yields the following
result.

Lemma 3.5. Given two sequences π = p1, . . . , pn and σ = q1, . . . , qm, the retractable discrete
Fréchet morphing between π and σ can be computed in O(nm log(nm)) time.

More generally, if the Fréchet distance between π and σ is ℓ, and

τ = |{(p, q) | p ∈ π, q ∈ σ, ∥pq∥ ≤ ℓ}| ,

then the running time of the algorithm is O(τ log τ).

Remark 3.6. (A) The first running time bound of Lemma 3.5 is a worst case bound, and for
many realistic inputs it is much smaller if the (discrete) Fréchet distance between them
is small compared to the diameter of the two curves. See Figure 3.1 for an example.

(B) Note that if one has to explore a large fraction of the grid (i.e., τ = Ω(nm)), then the
retractable Fréchet algorithm is slower than the standard discrete Fréchet algorithm,
because of the use of a heap.

4. The VE-Fréchet distance
In this section, we give a formal definition of the VE-Fréchet distance, show some of its basic
properties in relation to other variants of the Fréchet distance, and briefly discuss practical
considerations.

19

4.1. Definition and basic algorithm
The input is two polygonal curves π = p1p2 · · · pn and σ = q1q2 · · · qm. This induces the
free space diagram R = R(π, σ) (Definition 1.2), which is a rectangle R, partitioned into a
non-uniform (n−1)×(m−1) grid, where the ith edge pipi+1 ∈ π and the jth edge qjqj+1 ∈ σ,
induces the (i, j) grid cell Ci,j.

Definition 4.1. For two points u, v ∈ Rd, let −→uv = v−u
∥vy∥ be the (unit length) direction vector

from u to v.

Let pi = −−−→pipi+1 and qj = −−−→qjqj+1. Let xi = ∥π[p1, pi]∥ and yj = ∥σ[q1, qj]∥. The grid cell
Ci,j is the subrectangle [xi, xi + ∥pipi+1∥] × [yj, yj + ∥qjqj+1∥]. The elevation function for any
point (x, y) inside Ci,j is given by

e(x, y) = ∥π(x) − σ(y)∥ =
∥∥∥pi + (x− xi) ∗pi − qj − (y − yj) ∗ qj

∥∥∥ .
The function e(x, y) is a smooth convex function.

4
 More pertinent for our purposes, is

that the minimum of the elevation function along each boundary edge of Ci,j is unique, and
corresponds to the distance of a vertex of one curve (say pi ∈ π) to the closest point on an
edge (i.e., qjqj+1) of the other curve. This minimum along an edge of Ci,j is a portal. The
portals on the left and bottom edges of Ci,j are the incoming portals, and the other two are
outgoing portals.

The standard Fréchet distance asks for computing the x/y-monotone path between the
opposite corners of the free space, while minimizing the maximum height along this path.
The corresponding Fréchet morphing has the property that its intersection with a cell is
either a segment (or empty). We restrict the Fréchet morphing further, by requiring that
inside a cell, the morphing must be a straight segment connecting two portals of the cell. As
a result, we have to give up on the monotonicity requirement (more on that shortly).

Importantly, computing the new VE-Fréchet distance is now a graph search problem, in
the following graph.

0.25

0.50

0.75

1.00

1.25

Figure 4.1: Left: Two curves. Right: Their elevation function, and the associated graph.
See here for more info.

4Specifically, it is a square root of a paraboloid, as a tedious but straightforward calculation shows.

20

https://frechet.xyz/examples/10

Definition 4.2. Given two curves π = p1p2 · · · pn and σ = q1q2 · · · qm, their VE graph GVE =
GVE(π, σ) is a DAG defined over the grid of the free space diagram R = R(π, σ), where every
grid cell has four vertices on its boundary (some of them might coincide), corresponding to
the portals on the edges. Here, every cell has edges from each of its incoming portals to
each of its outgoing portals (i.e., four edges in total when the portals do not coincide). In
addition, there are two special vertices – the start vertex s (i.e., bottom left corner of R),
and target vertex t (i.e., top right corner of R). The portals on the grid edges adjacent to
s and t are moved to s and t, respectively. Every vertex v of this graph, has an associated
location (x, y) ∈ R, which in turn corresponds to two points pv = π(x) and qv = σ(y). The
height of v is the elevation of (x, y) – that is ∥pvqv∥.

For an example of the GVE graph, see Figure 1.3 . The VE-Fréchet distance between π
and σ is simply the bottleneck distance between s and t in GVE. We might as well compute
the retractable version.

Definition 4.3. Given two polygonal curves π and σ, the retractable VE-Fréchet morph-
ing is the unique morphing m realized by the retractable path in GVE(π, σ) from s to t, see

 Definition 3.1 . The VE-Fréchet distance is the maximum elevation of any point along m,
denoted by dve

F (π, σ).

Putting the above together, and using the algorithm of Lemma 3.2 , we get the following.

Theorem 4.4. Given two polygonal curves π and σ with n and m vertices respectively, their
VE-Fréchet distance, and the corresponding retractable VE Fréchet morphing mVE(π, σ) that
realizes it, can be computed in O(nm log(nm)) time.

We emphasize that that the running time bound in this theorem is pessimistic, and
in many cases the algorithm is significantly faster. For an example of the output of the
algorithm, see Figure 4.2 .

4.1.1. Reachable complexity

Definition 4.5. For two curves π and σ, consider the VE graph GVE = GVE(π, σ). For a
threshold r ≥ 0, let N≤r(π, σ) be the number of vertices of GVE that are reachable from the
start vertex via paths with maximum elevation at most r. The quantity N≤r(π, σ) is the
r-reachable complexity of π and σ.

A similar notion (relative free space complexity) was used by Driemel et al. [DHW12].
If r = dve

F (π, σ), then the algorithm for computing the VE morphing only explores vertices
in the r-reachable region, which readily implies the following.

Corollary 4.6. Given two polygonal curves π and σ with n and m vertices respectively,
their VE-Fréchet distance, and the corresponding retractable VE Fréchet morphing mVE(π, σ)
that realizes it, can be computed in O(n + m + N log N) time, where N = N≤r(π, σ) and
r = dve

F (π, σ).

21

0.25

0.50

0.75

1.00

1.25

Figure 4.2: The VE-Fréchet morphing for the two curves from Figure 1.3 . Note, that the
solution is “slightly” not x/y-monotone. For animation of this morphing, follow the link .

Remark 4.7. The above implies that the worst case, for the above algorithm, is whenN = nm.
This happens for example (somewhat counterintuitively) when π and σ are far from each
other, and their VE-Fréchet distance is realized by the distance of their endpoints (say, in
the start of the morphing). This somewhat absurd situation can happen for real world
inputs – follow this link for an example. Furthermore, this quadratic behavior is probably
unavoidable, as computing the VE-Fréchet distance probably requires quadratic time in the
worst case. We offer some approaches to avoid this for real world input later on.

Fortunately, for many inputs where the two curves are close to each other (e.g., their
VE-Fréchet distance is significantly smaller than their diameters), the running time of the
algorithm of Corollary 4.6 is O

(
(n+m) log(n+m)

)
, see Figure 3.1 for an example.

4.2. Basic properties of the VE Fréchet morphing/distance
Lemma 4.8. For any two curves π and σ, we have that dF(π, σ) ≥ dve

F (π, σ).

Proof: Consider the Fréchet morphing m realizing the Fréchet distance α = dF(π, σ). Track
the path m in the free space diagram, and inside each cell snap it to the portals of the
corresponding edges it crosses. Clearly, this results in a valid morphing that is a valid path
in GVE from the source to the target, and its bottleneck value is no bigger than the original
value (as by definition portals were the minimum elevation points along the corresponding
edges). However, β = dve

F (π, σ) being the minimum bottleneck path in this graph from the
start vertex to the target vertex, is definitely not bigger than α.

Observation 4.9. The VE-Fréchet morphing is monotone over the vertices.
Specifically, let m be the VE-Fréchet morphing between π and σ. If we project m on the

x-axis, denoted by x(m), we get a path from 0 to ∥π∥ on the real line. Note, that this path is

22

https://frechet.xyz/examples/10/
https://frechet.xyz/examples/11

not necessarily monotone, but importantly, for any vertex v ∈ π it is monotone. Specifically,
let α be the distance of v along π from its start. Then, the path x(m) crosses from one side
of α to the other side, exactly once (assuming v is an internal vertex). To see why this is
true, observe any morphing must cross the vertical line x = α. This line has vertices along
it, and observe that in GVE(π, σ) it is only possible to cross this line by using one of these
vertices, as no edge crosses from one side of this line to the other (i.e. the vertices on this
line are a separator). However, vertices along this line have outgoing edges only to vertices
that are to the right (or remain on the same x, but these target vertices are on grid edges
adjacent on to the right to this line).

Definition 4.10. Given a polygonal curve π = p1p2 · · · pn, a refinement of π is a polygonal
curve π′ = p1Q1p2Q2p3 · · ·Qn−1pn, where for all 1 ≤ i < n, Qi is a (possibly empty) sequence
of points occurring in order along the (directed) edge pipi+1.

Observation 4.11. If π′, σ′ are refinements of π, σ respectively, then dF(π′, σ′) = dF(π, σ)
– indeed, the additional vertices from a refinement do not change the underlying curve.

However, dve
F (π′, σ′) ≥ dve

F (π, σ) – indeed, refinement corresponds to adding vertical and
horizontal lines in the free space diagram that the morphing can cross only once (i.e., the
morphing is monotone at the vertices). As such, the morphing realizing dve

F (π′, σ′) is deter-
mined by more constraints, and it is thus (potentially) larger.

5. Computing the regular Fréchet distance

5.1. Direct Monotonization
The basic idea to compute the Fréchet distance using the new algorithm is to refine the
curves till their VE-Fréchet morphing becomes monotone.
Observation 5.1. If the VE-Fréchet morphing is x/y-monotone, then it realizes the (regu-
lar) Fréchet distance between the curves. Indeed, if the morphing is monotone then it is a
valid morphing considered by Definition 1.4 for the Fréchet distance, and thus dve

F (π, σ) ≥
dF(π, σ) ≥ dve

F (π, σ), where the latter inequality is from Lemma 4.8 .

5.1.1. How morphing encodes the motion.

A VE-Fréchet morphing m in a free space diagram R = R(π, σ) of two curves π and σ with
n and m vertices, respectively, is a polygonal path with t = n+m+O(1) vertices. Thus, a
morphing can be represented as m = (x1, y1), . . . , (xt, yt). A consecutive pair of vertices of
the morphing (xi, yi), (xi+1, yi+1) corresponds to two directed subsegments τ ⊆ π and ν ⊆ σ.
The matching of these two subsegments encodes a linear motion starting at the start points,
and ending and the endpoints. See Figure 5.1 .
Definition 5.2. Given a morphing m = (x1, y1), . . . , (xt, yt), let Xi = maxi

j=1 xj and Yi =
maxi

j=1 yj, for i = 1, . . . , t. Let mono(m) = (X1, Y1), (X2, Y2), . . . , (Xt, Yt) denote the direct
monotonization of m (which can be computed in O(t) time).

23

Figure 5.1: Left: Two curves. Right: Their Fréchet morphing. Since the Fréchet morphing
computed inside each cell of the free space diagram is a segment, it is enough to mark all the
critical configurations when the morphing enters/leaves a cell. Each critical configuration is
depicted on the right by a segment connecting the two points being matched. In between two
such configurations, the morphing is the linear interpolation between the two configurations.
See here for an animation of this specific morphing.

Observation 5.3. Let mVE be the VE-Fréchet morphing between π and σ. Then dF(π, σ) ∈
[dve

F (π, σ), ω(mono(mVE))], where the lower bound follows from Lemma 4.8 and the upper
bound follows as mono(mVE) is a monotone morphing and thus is a valid morphing consid-
ered by Definition 1.4 for the Fréchet distance.

For many natural inputs ω(mVE) = ω(mono(mVE)). Specifically, this occurs if either
mVE is monotone to begin with or if the “zigzagging” in mVE is happening in parts where
the leash is relatively short, and thus the fixup due to direct monotonization does not af-
fect the global bottleneck. Note that in this case, dve

F (π, σ) = ω(mono(mVE)), and so by
 Observation 5.3 , mono(mVE) is an optimal morphing realizing dF(π, σ).

Given a morphing m, one can compute its width in linear time, as by convexity it
is realized by the elevation of one of the vertices of m. Thus, a first step to trying to
compute dF(π, σ), is to compute the VE-Fréchet morphing mVE between π and σ, and then
directly monotonize it. If ω(mVE) = ω(mono(mVE)), then we have computed the Fréchet
distance and so we are done. Otherwise, we will use refinement to narrow the interval
[dve

F (π, σ), ω(mono(mVE))], as described below.

5.1.2. Monotonization via refinement

The lower/upper bound. Let mVE be the VE-Fréchet morphing between π and σ. By
 Observation 5.3 , dF(π, σ) ∈ [dve

F (π, σ), ω(mono(mVE))]. Thus we have initial upper and lower
bounds for dF(π, σ), and our approach is to repeatedly improve these bounds until they are
equal, at which point the computed morphing realizes the Fréchet distance between the two
curves.

Observation 5.4. Let ε ∈ (0, 1). One can refine π and σ into curves π′ and σ′, with
VE-Fréchet morphing m′

VE, such that

ω(mono(m′
VE)) − dve

F (π′, σ′) ≤ ε

Indeed, create π′ and σ′ by introducing vertices along π and σ respectively, such that no edge
has length exceeding ε/2. Recall that by Observation 4.9 , m′

VE is already monotone over

24

https://frechet.xyz/examples/15/

vertices, and thus mono(m′
VE) does not change the edges from the curves that points in the

morphing are mapped to. Thus the direct monotonizations of the VE morphings of π′ and σ′

can increase the distance by at most twice the maximum edge length.

Thus, in the limit, one can compute the Fréchet distance from a refinement of the two
curves. Fortunately, there is a finite refinement that realizes the Fréchet distance.

Lemma 5.5. Let π and σ be two polygonal curves of total complexity n. Then, there is a
set S of O(n2) vertices, such that if we refine π and σ using S, then for the resulting two
curves, π′ and σ′, we have that dve

F (π′, σ′) ≤ dF(π, σ) = ω(mono(mVE(π′, σ′))).

Proof: Let r = dF(π, σ), and introduce a vertex in the interior of an edge of π if this interior
point is in distance exactly r from some vertex of σ, and vice versa. Let π′ and σ′ be
the resulting refined curves. Consider the grid H of R(π′, σ′), and any edge e of this grid.
The value of the elevation function on e is an interval: e(e) = {e(p) | p ∈ e}, and this
interval cannot contain r in its interior (if it did, we would have broken it by introducing
a vertex at the corresponding interior point). Thus any edge in H whose elevation interval
has a value above r, cannot contain any interior point with value below r, and thus such
an edge is infeasible (in its interior) for the VE-Fréchet morphing mVE(π′, σ′), as we know
dve
F (π′, σ′) ≤ r. Namely, every edge of the free space is either completely feasible (for r), and

or completely infeasible.

Figure 5.2: The red path has a zigzag in this row. The blue path depicts the monotonized
path.

Now, if m = mVE(π′, σ′) is monotone then we are done. Otherwise, the portions of m
that are not monotone can be broken into a sequence of “zigzags” in columns and rows.
Consider such a (say) row with non-monotonicity. The path (i.e., morphing) enters the row
from the bottom on the left side, and leaves on the right from the top, see Figure 5.2 . The
monotonized portion of this path inside this row enters and leaves through the same extreme
portals, but importantly, it uses the same edges. All these edges have maximum elevation
at most r, and thus the width of the monotonized morphing is at most r (and thus, equal
to r), establishing the claim.

Remark 5.6. It is straightforward to check if a given morphing m is monotone. If it is not,
then compute for each curve the portions where this morphing travels on them backward,
and introduce a vertex in the middle of each backwards portion. Now, we recompute a
morphing on the refined curve, Clearly this reduces the “back and forth” non-monotone
motion on the two curves. One can naturally repeat this process several times till the non-
monotonicity disappears, or becomes so small that it can be ignored. We refer to this as
bisection refinement.

25

5.2. Computing the regular Fréchet distance
The above suggests natural strategies for computing the Fréchet distance:

(I) First, compute the VE-Fréchet morphing. We now apply the bisection refinement,
described in Remark 5.6 , to the resulting morphing (recomputing the morphing using
VE-Fréchet if needed). In practice, a few rounds of this bisection refinement makes
these portions of the morphing involve leashes shorter than the bottleneck (even after
direct monotonization), and we end up with the Fréchet distance.

Remark 5.7. Underlying the bisection refinement strategy is the implicit assumption that the
matching induced by the VE-Fréchet morphing is (relatively) stable, and matches roughly
the same portions of the curves after refinement. This seems to be the case for all the
curves we considered. Understanding this stability might be an interesting venue for future
research.

(II) Another (more systematic) approach to refinement is to consider all the vertices V
(say) of π involved in a subpath of the morphing that is not monotone on an edge
e of σ. We refine e along all the points that are intersections of bisectors of pair
of points of V with e. Since repeated application of this process converges to the
refinement set of Lemma 5.5 (the set used in this lemma is too expensive to compute
explicitly), this implies that sooner or later this yields the Fréchet distance (after direct
monotonization). Essentially, this performs a search of the monotonicity events, see

 Section 1.2.2 , that are relevant to the current morphing.

5.3. Speed-up via simplification
A natural approach to try and avoid the quadratic complexity of computing the VE-Fréchet
distance is to use simplification of the input before computing the distance. Here we explore
how to use simplification, so that we can compute the exact distance. We start with a simple
linear-time simplification algorithm [AHK+06 , DHW12].
Algorithm 5.8. For a polygonal curve π = p1, p2, . . . , pn, and a parameter δ > 0, the algorithm
marks the initial vertex p1, and sets it as the current vertex. The algorithm repeatedly scans
π from the current vertex till reaching the first vertex pi that is in distance at least δ from
the current vertex. It marks pi, and sets it as the current vertex. The algorithm repeats this
until reaching the final vertex, which is also marked. The resulting subcurve connecting the
marked vertices π = simpl(π, δ) is the δ-simplification of π, and it is not hard to verify
(and it is also well known [DHW12]) that dF(π, π) ≤ δ.

Observe that dF(π, σ) − 2δ ≤ dF(π, σ) ≤ dF(π, σ) + 2δ. (same holds for the VE version),
where π = simpl(π, δ) and σ = simpl(σ, δ).
Lemma 5.9. Given a curve π with n vertices, and a simplified curve π computed by applying

 Algorithm 5.8 to π, with a parameter δ, one can compute, in O(n) time, a Fréchet morphing
between π and π of width ℓ ≤ 2δ, such that dF(π, π) ≤ ℓ.

26

Proof: Consider the case that π is a single segment s. Consider first the “silly” morphing
m′, that matches every vertex of π to its nearest neighbor on s (in between, it interpolates
linearly). Clearly, this is a weak morphing between π and π, but it is also clearly optimal.
Consider the monotone version m of m′ that one gets from m′ by never moving back along
s, and let ℓ be its width. It is not hard to verify that ℓ ≤ 2δ.

Now remove the assumption that π is a single segment. By construction, π is a subse-
quence of π, including the start and end vertices. Thus the edges of π partition π into pieces,
which start and end at the corresponding end points of the edge. Thus in this more general
case, we can simply apply the above argument to each edge of π and its corresponding piece
of π, and then concatenate all these morphings together.

Given a δ-simplification π, the above gives us a fast way to compute a morphing between
π and π. This morphing may not be optimal, but its error is bounded by 2δ, and we are free
to set δ to our desired value (depending on which the simplified curve may have significantly
fewer vertices). This basic approach works for any subcurve specified by a subsequence of
the vertices of π.

Remark 5.10. A natural conjecture is that for any sub-curve π of π defined by a subset of the
vertices of π (including the same start and end vertices), the above quantity dF(π, π) ≤ ℓ ≤
2dF(π, π). To see that this is false, let m > 1 be an integer, and let δ = 1/2m, and consider
the one dimensional curve and its subcurve:

π = 0, 1, δ, 1 − δ, 2δ, 1 − 2δ, . . . , 1/2 − δ, 1/2 + δ, 1/2.
π = 0, 1 − δ, 2δ, 1 − 2δ, . . . , 1/2 − δ, 1/2 + δ, 1/2.

The above algorithm would compute ℓ ≈ 1 (or ℓ ≈ 1/2 if it computes the exact Fréchet
distance between every segment of the simplification and its corresponding subcurve), but
dF(π, π) = O(δ).

5.3.1. Combining morphings

Getting a monotone morphing via simplification. The input is the two curves π and
σ, and a parameter δ. We compute π = simpl(π, δ) and σ = simpl(σ, δ). Next, compute

m1 = mono(mVE(π, π)),m2 = mono(mVE(π, σ)), and m3 = mono(mVE(σ, σ)).

For the sake of simplicity of exposition, think about these morphings mi as piecewise
linear 1-to-1 functions. For example, m1 : [0, ∥π∥] → [0, ∥π∥]. Thus, combining the above
three morphings m = m3 ◦ m2 ◦ m1 : [0, ∥π∥] → [0, ∥σ∥] yields the desired monotone
morphing.

Remark 5.11. In practice, one does not need to compute m1 = mono(mVE(π, π)), but one
can do a “cheapskate” greedy morphing (which is monotone) as done by the algorithm of

 Lemma 5.9 .

27

The algorithm for combining two morphings is a linear time algorithm somewhat similar
in nature to the merge subroutine used in merge-sort. We omit the straightforward but
tedious details.

Lemma 5.12. Given two compatible x/y-monotone morphings m1 and m2 (i.e., polygonal
curves in R2), their combined morphing m2 ◦ m1 can be computed in linear time.

Remark 5.13. The above provides us with a “fast” algorithm for computing a morphing be-
tween two input curves π and σ in time that is effectively near linear (if the simplification is
sufficiently aggressive). Specifically, we simplify the two curves, and then compute the mono-
tone Fréchet distance between the simplified curves by computing the VE-Fréchet morphing
and refining it till it becomes monotone. We then stitch the three morphings together to
get a morphing for the original two curves. Clearly, by making the simplification sufficiently
small, this converges to the optimal Fréchet morphing.

The question is thus the following: Given a Fréchet morphing, can we test “quickly”
whether it realizes the Fréchet distance between the two curves (without computing the
Fréchet distance directly).

5.4. Computing the exact Fréchet distance using simplification

5.4.1. Morphing sensitive simplification

The challenge in using simplification for computing the Fréchet distance is to be able to
argue that the computed morphing is optimal. To this end, we are interested in computing
a lower bound on the Fréchet distance from simplified curves, such that the upper/lower
bounds computed match, thus implying that the computed solution is indeed optimal.

A weak lower bound. Consider two curves π and σ, and their respective simplifications
π and σ. By the triangle inequality, we have

dF(π, σ) ≥ l(π, σ) = dF(π, σ) − dF(π, π) − dF(σ, σ).

The lower bound l is usually easy to compute (or bound from below), since the simplifi-
cations usually provide an immediate upper bound on dF(π, π) and dF(σ, σ).

Definition 5.14. For any ψ > 1, a Fréchet morphing m of π and σ is a ψ-approximate
morphing if dF(π, σ) ≤ ω(m) ≤ ψdF(π, σ). Thus l = ω(m)/ψ is a lower bound on the
Fréchet distance between π and σ.

Definition 5.15. For a morphing m ∈ Mπ,σ, a lower bound l ≤ dF(π, σ), and a point p =
(x, y) ∈ m, the slack at p is ∆(p) = max(l− e(p), 0). A point p ∈ m is tight if ∆(p) = 0.

Consider an optimal (say retractable) Fréchet morphing m between π and σ. If the
lowerbound is the Fréchet distance, then we expect only the point in the morphing realizing
the bottleneck to be tight. One can map the slack from the morphing back to the original

28

curves. Specifically, for v ∈ π ∪ σ, let maxm(v) be the maximum length leash attached to v
during the morphing m (this can correspond to the maximum elevation along a vertical or
horizontal segment in m).

Definition 5.16. For a vertex v ∈ π ∪ σ, the slack of v is ∆(v) = max(l− maxm(v), 0).

Intuitively, the slack of a vertex is how much one can move it around without introducing
too much error – observe that for some vertices the slack is zero, implying they cannot be
moved. So, consider a curve π = p1, . . . , pn, and a “simplified” subcurve of it π. For a vertex
pi ∈ π, its representative in π, denoted by rep(pi), is the point pj, such that pj is a vertex
of π, j is maximal, and j ≤ i.

Definition 5.17. For some real number τ ≥ 1, the curve π is a (m, τ)-sensitive simplification
(or simply m-simplification) of π if, for all i, we have that ∥pi − rep(pi)∥ ≤ ∆(pi)/τ .

5.4.2. Computing a lower-bound on the Fréchet distance

Consider an edge e = pipj of the simplified curve. The width of the edge, denoted by
wF(e) = dF(pipj, pipi+1 . . . pj), and consider the hippodrome

h(e) = e⊕ wF(e) =
{
p ∈ Rd

∣∣∣ d(p, e) ≤ wF(e)
}
,

where d(p, e) is the distance of p from e. More generally, for a point p ∈ e ⊆ π, we denote
by wF(p) = wF(e).

Let mπ : [0, ∥π∥] → [0, ∥π∥, be a (monotone) morphing of π to π (mσ is defined similarly
for σ and σ). There is a natural simplification of the elevation function e(x, y). Specifically,
we define

e′(x, y) =
∥∥∥π(mπ(x)

)
− σ

(
mσ(y)

)∥∥∥− wF

(
π(mπ(x)

))
− wF

(
σ(mσ(y)

))
≤
∥∥∥π(mπ(x)

)
− σ

(
mσ(y)

)∥∥∥−
∥∥∥π(x) − π(mπ(x)

)∥∥∥−
∥∥∥σ(y) − σ(mσ(y)

)∥∥∥ ≤ e(x, y).

Namely, computing the Fréchet distance using e′ (instead of e), would provide us with a
lower bound on the Fréchet distance between the two curves. Of course, this Fréchet distance
computation can be done directly on the corresponding “elevation” function between the two
simplified curves π and σ:

∀(x, y) ∈ [0, ∥π∥] × [0, ∥σ∥] e(x, y) = ∥π(x) − σ(y)∥ − wF

(
π(x

))
− wF

(
σ(y

))
.

Naturally, one can replace wF

(
π(x

))
and wF

(
σ(y

))
by larger quantities, and still get the

desired lower bound. Let dF(π, σ) denote this lower-bound on the Fréchet distance.

29

5.4.3. Computing the exact Fréchet distance

The above suggests an algorithm for computing the exact Fréchet distance. Start with a
low quality approximate morphing m between π and σ (this can be computed directly by
simplifying the two curves). Use this to get a more sensitive approximation to the two
curves, and compute the Fréchet distance between the two simplified curves. This yields a
morphing between the two original curves (i.e., upper bound), and a matching lower bound
on the Fréchet distance between the two curves. If the two are equal, then we are done.

The critical property of this algorithm, is that it never computes directly the exact Fréchet
distance between the two original curves, which might be too large to handle in reasonable
time. The result is summarized in the following lemma.

Lemma 5.18. Let π and σ be two curves, and let m be a ψ-approximate morphing between
them, for some ψ > 1. Let τ ≥ 1 be some constant, and consider (m, τ)-sensitive simplifi-
cations π, σ, of π, σ, respectively. Let m2 : π → σ be the optimal Fréchet morphing between
π and σ, and let m1 : π → π, and m3 : σ → σ, be the natural morphings associated with
the simplifications. This gives rise to a natural morphing m′ = m3 ◦ m2 ◦ m1 from π to σ.
If ω(m′) = dF(π, σ), then m′ realizes the optimal Fréchet distance between π and σ. where
dF(π, σ) is the Fréchet distance between π and σ under the modified elevation function e.

It is easy to verify that for τ large enough the two simplified curves are the original
curves, and the above would compute the Fréchet distance. Thus, the resulting algorithm
is iterative – as long as the above algorithm fails, we double the value of τ , and rerun the
algorithm, till success.

5.5. The sweep distance

5.5.1. Definitions

Another measure of distance between curves is the CDTW (Continuous Dynamic Time Warp-
ing) distance. This distance has a neat description in our setting – given a morphing m

between π and σ, we define the two functions

f(x) = min
y:(x,y)∈m

e(x, y) and g(y) = min
x:(x,y)∈m

e(x, y).

In words, f(x) (resp. g(y)) is the minimum length leash attached to the point π(x) (resp.
σ(y)) during the morphing of m. We define the warping cost of m to be

cost(m) =
∫ ∥π∥

x=0
f(x) dx+

∫ ∥σ∥

y=0
g(y) dy. (5.1)

The Continuous Dynamic Time Warping (CDTW), between the two curves is

dCDTW(π, σ) = min
m∈M+

π,σ

cost(m).

30

Computing the CDTW between curves is not easy and only partial results are known,
see the introduction for details. We point out, however, that our available machinery leads
readily to computing an upper bound on the CDTW, and furthermore, this upper bound
can be made to converge to the CDTW distance via simple refinements of the two curves. In
particular, for a well behaved morphing, the integrals of Eq. (5.1) can be computed exactly.

5.5.2. The sweep distance

The cost of morphing along a segment inside a cell. Given two directed segments
τ = p1p2 and τ ′ = q1q2, the natural linear morphing between them is the one where the two
points move in constant speed. Specifically, at time t ∈ [0, 1], we have the two moving points
p(t) = (1 − t)p1 + tp2 and q(t) = (1 − t)q1 + tq2. The cost of this morphing boils down to a
function

f(x) =
√
ax2 + bx+ c,

for some constant a, b, c, and integrating f on an interval [0, ∥τ∥]. Using the computer alge-
bra system maxima [Max23] yields the following indefinite integral (which we subsequently
verified is correct).

F (x) =
∫
f(x) dx =

(
c

2
√
a

− b2

8a3/2

)
asinh 2ax+ b√

4ac− b2
+
(
x

2 + b

4a

)
f(x).

In particular, price(τ) = F (∥τ∥)−F (0) is the price of the CDTW charged to τ . We repeat the
same argument, but now the morphing is interpreted being for a point moving on τ ′. This
would yield a similar indefinite integral G(·), and the price of τ ′ is price(τ ′) = G(∥τ ′∥)−G(0).

In the free space diagram, the morphing between τ and τ ′ corresponds to a segment that
lies in a cell, and price(τ) + price(τ ′) is the price the sweep distance assigns this segment in
the free space diagram.

Computing the sweep distance. The above gives us a new pricing of the edges of the
VE graph (see Definition 4.2), as every edge is a segment in the free space diagram. We can
then use Dijkstra to compute the shortest path in the VE graph. Naturally, the resulting
path is not monotone, but monotonicity can be easily achieved by introducing middle points,
as described in Remark 5.6 . We then recompute the shortest path getting a morphing, and
repeat the refinement step if the morphing is not yet monotone. Usually, one round of
refinement seems to suffice. We output the computed distance (for the associated monotone
morphing). We refer to this quantity, as the sweep distance between the two original
curves, denoted by dSW (π, σ).

This readily yields the following.

Lemma 5.19. The sweep distance between two curves π and σ can be computed by repeatedly
running Dijkstra on the appropriately defined DAG. The sweep distance computed is an upper
bound on the CDTW distance between the two curves.

31

Remark 5.20. The number of times Dijkstra has to be invoked by the above algorithm for
real world inputs seems to be once or twice, as the Sweep Distance tends to be larger for
longer curves (since its an integral (of a non-negative function) over the curves).

Given a curve π, a splitting of π is the curve resulting from introducing a vertex in the
middle of each segment of π. Let πi denote the curve resulting for i iterations of splitting.
We then have the following.

Lemma 5.21. limi→∞ dSW (πi, σi) = dCDTW(π, σ).

Proof: As i increases, a cell in the free space diagram of πi and σi becomes smaller, cor-
responding to the distance functions between shorter subsegments of the two curves. In
particular, the functions becomes closer to being constant on each cell, and the relevant
integral, forming the CDTW distance, is better approximated by the shortest path on the
VE graph.

5.5.3. Computing a lower bound on the CDTW distance using the sweep distance

It is natural to try and compute a lower-bound on the CDTW distance, so that one can
estimate the quality of the upper-bound computed by the above algorithm. To this end,
consider the free space diagram R = R(π, σ) induced by π and σ, see Definition 1.2 . Let Ξ
be the set of grid cells of R, and consider the “silly” elevation function,

∀(x, y) ∈ R e(x, y) = min
(x′,y′)∈Ξ(x,y)

e(x′, y′),

where Ξ(x, y) denotes the cell in the grid of R containing the point (x, y). Namely, we flatten
the elevation function inside each grid cell, to be its minimum. Similarly, we assign a grid
edge e of R, the minimum of the minimum elevations on the two cells adjacent to e.

Algorithm. Observe that the grid of R naturally defines a directed grid graph where each
vertical cell edge is directed upwards and each horizontal cell edge is directed to the right
(note that this graph is different than the VE graph). We now weight the edges of this graph
according the above “flattened” elevation function. Now compute the shortest path on this
weighted grid graph going from bottom left to top right. We claim the resulting quantity
ℓ(π, σ) is a lower-bound on the sweep distance between the two curves.

Lemma 5.22. ℓ(π, σ) ≤ dSW (π, σ).

Proof: Consider computing the sweep distance for this “elevation” function. Since the sweep
distance is decomposed along its x and y components, and the function is a constant inside
a grid cell, one can safely assume the optimal morphing is axis aligned. The only remaining
possibility is that the optimal morphing enters a column on a left edge, climbs in a stairway,
and leaves through an edge on the right. Let e1, e2, . . . , ek be the horizontal edges this path
intersects, and observe that one can always modify this path, to move vertically to the

32

Figure 5.3: Snapping the path to the grid.

cheapest edge (under the constant elevation function), and cross using this function. Thus,
the optimal path in this case can be restricted to use the grid edges, see Figure 5.3 . The
case that the path does the same thing in a row can be handled similarly.

Lemma 5.23. For any two curves π and σ, we have limi→∞ ℓ(πi, σi) = dCDTW(π, σ).

Proof: The same integration argument works – the difference in value between the computed
value for πi and σi, and the optimal CDTW distance shrinks as i increases, as the function
being integrated “converges” to a constant in the grid cells of the refined free space diagram.

5.5.4. Discussion of the two algorithms

Experiments show that the upper bound computed by the algorithm described above is a
good approximation to the optimal solution (even with no refinement). This holds because
some of the VE graph edges (specifically, left-to-right, and bottom-to-top) realize the mini-
mum lines in the cell of the grid, thus at least one of the two integrals is minimized if the
solution follow this segment, see Observation A.2 . Thus, the paths suggested by the VE
graph are already “cheap”, at least locally.

The lower bound algorithm is far from being very good, as far as convergence after
refinement. We leave the question of a better algorithm for computing a lower bound as an
open problem for further research.

5.6. Fast output-sensitive simplification extractor
Given a curve π, the task at hand is to preprocess it, so that given a parameter µ, one can
quickly extract a subcurve σ of π, induced by a subset of its vertices, such that the Fréchet
distance between σ and π is at most µ. Furthermore, since we are dealing with huge input
curves, the query time has to be proportional to |V (σ)| – namely, the query time is output
sensitive, not effected directly by the input size. We first describe an algorithm that given a
curve with n vertices, in O(n log n) time, computes an array of numbers of size n, such that
one can extract quickly an output-sensitive simplification from it. We then discuss ways to
improve the quality of this simplification.

33

5.6.1. Fast extractor

A fast approximation. For a closed set X ⊆ Rd and a point p ∈ Rd, let d(p,X) =
mint∈X ∥pt∥ be the distance of p to X. Similarly, let ⇓X (p) = arg mint∈X ∥pt∥ be the
nearest point of X to p. The projection of a set Y to a closed set X ⊆ Rd, is the set
⇓X(Y) = {⇓X(p) | p ∈ Y }.

Lemma 5.24. Given a (directed) curve π = p1 . . . pn with n vertices, consider any (directed)
segment τ = zz′, such that ⇓τ(p1) = z and ⇓τ(pn) = z′. One can compute in linear time a
monotone morphing m, and its width ω(m), between π and τ , such that dF(π, τ) ≤ ω(m) ≤
3dF(π, τ).

Proof: Consider first the morphing m′, that maps each point of π to its nearest point on τ .
Clearly, ω(m′) ≤ ω(m⋆), where m∗ is the optimal (monotone) morphing between π and τ .
Consider the monotone version m of m′ that one gets from m′ by never moving back along
τ . If m′ is monotone, then m = m′ and ω(m) = dF(π, τ), and we are done.

τ

qL
t

qν

σ

s

∂h+
q

s′

π

τ

qL
t

q

u

u′ ν

π

Figure 5.4: Illustration of the proof of Lemma 5.24 .

The curve π is uniformly parameterized on the interval I = [0, ∥π∥], see Definition 1.1 .
The morphing m′ matches π(t) with the point ⇓τ(π(t)).

Let f(t) = ∥⇓τ(π(t)) − z∥ be the normalized parameterization of this projection point
on τ . Thus, for all t, f(t) ∈ [0, ∥τ∥], f(0) = 0, and f(∥π∥) = ∥τ∥. The max version of f
is F (t) = maxx:[0,t] f(x), and the morphing m, for all t, maps π(t) to τ(F (t)). A maximal
interval J = [α, β] ⊆ [0, ∥π∥], with α < β, such that F (J) is a single value, is a plateau.
For a plateau the morphing m matches all the points of π(J) to the point q = τ(F (J)). A
point x ∈ [0, ∥π∥] not contained in any plateau, is matched by m, to the same point it was
matched by m′, that is τ(f(x)) =⇓τ(π(x)).

The only places where the leash used by m might be larger than m⋆ is in the plateaus.
So consider such a plateau J = [α, β], with α < β. Let ν = {τ(f(t)) | t ∈ J} be the portion
of τ that is being used by m′ for points of σ = π(J). The start of this plateau in π is
s = π(α), and the end is t = π(β). The left endpoint of ν ⊆ τ is the projection of some point
u = π(γ), with γ ∈ (α, β), such that f(J) = [f(γ), f(β)]. Let qL = τ(f(γ)) and q = τ(f(β))
be the right and left endpoints of ν, respectively, see Figure 5.4 . Finally, let r be the middle
point of ν.

If the optimal (monotone) morphing m⋆ matches s to a point s′ ∈ τ that appears before
r on τ , then ω(m⋆) ≥ ∥ss′∥ ≥ ∥ν∥ /2, see Figure 5.4 (left). Otherwise, m⋆ maps u to a

34

point u′ ∈ τ that appears after r on τ . But then, ω(m⋆) ≥ ∥uu′∥ ≥ ∥ν∥ /2, see Figure 5.4

(right). We conclude that
ω(m⋆) ≥ max(ω(m′), ∥ν∥ /2).

As a reminder, m matches all the points of σ = π(J) to q. Let ℓ = maxp∈σ d(p, ν) be the
maximum leash length deployed by m′ for any point of σ. We have that the width of m

restricted to σ is
ℓJ = max

p∈σ
∥pq∥ ≤

√
ℓ2 + ∥ν∥2 ≤

√
ω(m′)2 + ∥ν∥2 ≤

√
2 max(ω(m′), ∥ν∥)

≤ 2
√

2 max(ω(m′), ∥ν∥ /2) ≤ 3ω(m⋆).
Now, ω(m) is the maximum of ω(m′) and the maximum of ℓJ , over all plateaus J , which
implies the claim.

Preprocessing. The idea is to build a hierarchical representation of the curve. So let
the input curve be π = p1p2 . . . pn – the output will be an array A[1 . . . n] of real numbers.
The roughest approximation for π is the spine p1pn. If we want a finer approximation, the
natural vertex to add is pα(1,n), where k = α(i, j) = ⌊(i+ j)/2⌋, which yields the curve
p1pkpn. The recursive algorithm compProfile(1, n) uses the fast approximation algorithm
of Lemma 5.24 to compute

A[k] = max(D(π[1, k]), D(π[k, n])].
The algorithm now continues filling the array recursively, by calling compProfile(1, k) and
compProfile(k, n).

Extracting the simplification (extract). Given a parameter w, the algorithm performs
a recursive traversal of the curve, as described above. If the traversal algorithm arrives to
an interval Ji : jK, with k = α(i, j), such that A[k] > w, then the algorithm adds pk to
the simplified curve, after extracting the simplification recursively on the range Ji : kK, and
before extracting the simplification recursively on Jk : jK. If A[k] ≤ w, then the algorithm
just adds pk to the simplification, without performing the recursive calls.
Lemma 5.25. Given a polygonal curve π with n vertices, the algorithm compProfile pre-
process it, in O(n log n) time, such that given a parameter w ≥ 0, the query algorithm ex-
tract computes a subcurve π (induced by a subset of the vertices of π), such that dF(π, π) ≤
w. The extraction algorithm works in O(|V (π)|) time.
Proof: The running time bounds are immediate. As for the correctness, it follows by ob-
serving that the simplification being output breaks the input curve into sections, such that
each section is matched to a segment, such that the Fréchet distance between a section and
its corresponding segment is at most w.
Remark 5.26. Note, that the above just extracts a simplification quickly – this simplification
might potentially have many more vertices than necessary, but in practice it works quite
well. We can apply the algorithm described next as a post-processing stage to reduce the
number of vertices.

35

5.6.2. A greedy simplification.

A better simplification algorithm, that yields fewer vertices than the δ-simplification used
above, and the fast extractor used above, is to do a greedy approximation as suggested
by Aronov et al. [AHK+06]. Let π = p1 . . . pn. The algorithm initially starts at the
vertex p1. Assume that it is currently at the vertex pj. The algorithm then sets the next
vertex in the simplification to be pk, where k is the smallest index greater than j such that
dF(π[pj, pk], pjpk) ≤ δ and dF(π[pj, pk+1], pjpk+1) > δ (or k = n if the end of the curve
is reached). One can use the algorithm Lemma 5.24 coupled with exponential and binary
search to compute k in time O((k − j + 1) log(k − j + 1)) (of course, here the guarantee is
somewhat weaker). This algorithm yields quite a good approximation in practice with fewer
vertices than the δ-simplification.

Lemma 5.27. Given a curve π with n vertices, and a parameter δ, the above algorithm
computes, in O(n log n) time, a curve π, such that dF(π, π) ≤ δ.

To get a better simplified curve quickly, after preprocessing, given a parameter δ ≥ 0, one
can first use the fast extractor (extract) to compute a simplification (with distance ≤ δ/10),
and then apply the above algorithm to the resulting curve to compute a simplification with
distance ≤ 0.9δ. By the triangle inequality, the resulting simplification is distance at most δ
from the original curve. This combined simplification approach works quite well in practice.

Remark 5.28. Somewhat confusingly, we have three simplification algorithms described in
this paper. The first, Algorithm 5.8 , is a simple linear scan of the input curve, and is poten-
tially slow if the input curve is huge, particularly if we need to generate many simplifications
of the same curve. Furthermore, in practice, the upper bound it provides on the error is way
bigger than the true error. The second approach, using compProfile for preprocessing, and
using extract, is much faster but still yields (in practice) inferior simplifications. Using the
greedy simplification algorithm enables us to “cleanup” the simplification, and get a curve
with significantly fewer vertices.

6. Conclusions and future work
In this work, we have demonstrated that our variant of the Fréchet distance is both the-
oretically efficient and viable in practice. We provided standard libraries for the algo-
rithms in Julia and Python. Furthermore, our libraries compute the retractable Fréchet
distance/morphing, which seems to perform quite well in practice, and is better at handling
noise than the original Fréchet distance. This suggests that our algorithm may be useful
in applications where the runtime is dominated by Fréchet distance computations. More
generally, we believe the high quality of our implementations, and their easy availability
via standard libraries in Julia and Python should make our code and algorithms easily
accessible for casual users.

36

Clustering. Using the implementation given by Bringmann et al. [BKN21], there has been
substantial empirical work on efficient clustering of curves. Notably, Buchin et al. [BDLN19]
empirically study algorithms for (k, ℓ)-center clustering. We omit the formal definition of
this problem here, but of note is the large number of Fréchet distance computations required
to determine the furthest curve from the set of existing curves chosen as centers. We believe
that our algorithm is very well suited for this task, as our heap-based implementation can
be easily modified to stop early if the Fréchet distance goes beyond a given threshold.

Similarly, there has been prior empirical work on (k, ℓ)-median clustering [BBK+20]
under the dynamic time warping distance, and we believe our algorithm would perform well
in this application as well.

Polygonal hierarchies and fast simplification. A strategy that works quite well for the
task of Section 2.2.2 is to precompute, for all input curves, the fast simplification extractor
of Lemma 5.25 . Then, given a query, one can simplify the two curves quickly to the right
resolution δ (initially guessed to be some large value) using this extractor, then apply the
algorithm of Lemma 5.27 to get a simplification with few vertices. With these simplifications,
then compute the Fréchet distance, and repeat the process, with smaller δ, till the query is
resolved. By caching the simplifications of the input curves, one can achieve better speedup
if there are multiple computations involving the same curve.

References
[AG95] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal

curves . Int. J. Comput. Geom. Appl., 5: 75–91, 1995.
[AHK+06] B. Aronov, S. Har-Peled, C. Knauer, Y. Wang, and C. Wenk. Fréchet distance

for curves, revisited . Proc. 14th Annu. Euro. Sympos. Alg. (ESA), vol. 4168.
52–63, 2006.

[BBD+17] K. Buchin, M. Buchin, D. Duran, B. T. Fasy, R. Jacobs, V. Sacristán, R. I.
Silveira, F. Staals, and C. Wenk. Clustering trajectories for map construction .
Proc. 25th ACM SIGSPATIAL Int. Conf. Adv. Geog. Info. Sys., GIS, 14:1–
14:10, 2017.

[BBK+20] M. Brankovic, K. Buchin, K. Klaren, A. Nusser, A. Popov, and S. Wong.
 (k, l)-medians clustering of trajectories using continuous dynamic time warp-
ing . Proceedings of the 28th International Conference on Advances in Geo-
graphic Information Systems, 99–110, 2020.

[BBL+16] K. Buchin, M. Buchin, R. van Leusden, W. Meulemans, and W. Mulzer.
 Computing the fréchet distance with a retractable leash . Discret. Comput.
Geom., 56(2): 315–336, 2016.

37

http://dx.doi.org/10.1142/S0218195995000064
http://dx.doi.org/10.1142/S0218195995000064
http://dx.doi.org/10.1007/11841036_8
http://dx.doi.org/10.1007/11841036_8
http://dx.doi.org/10.1145/3139958.3139964
http://dx.doi.org/10.1145/3397536.3422245
http://dx.doi.org/10.1145/3397536.3422245
http://dx.doi.org/10.1007/S00454-016-9800-8

[BBMM17] K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer. Four soviets walk the
dog: improved bounds for computing the Fréchet distance . Discrete Comput.
Geom., 58(1): 180–216, 2017.

[BBMS19] K. Buchin, M. Buchin, W. Meulemans, and B. Speckmann. Locally correct
fréchet matchings . Comput. Geom. Theory Appl., 76: 1–18, 2019.

[BDLN19] K. Buchin, A. Driemel, N. van de L’Isle, and A. Nusser. Klcluster: center-based
clustering of trajectories . Proc. 27th ACM SIGSPATIAL Int. Conf. Adv. GIS,
496–499, 2019.

[BKN21] K. Bringmann, M. Künnemann, and A. Nusser. Walking the dog fast in prac-
tice: algorithm engineering of the fréchet distance . J. Comput. Geom., 12(1):
70–108, 2021.

[CKT+16] S. Chechik, H. Kaplan, M. Thorup, O. Zamir, and U. Zwick. Bottleneck paths
and trees and deterministic graphical games . 33rd Symposium on Theoretical
Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans,
France, vol. 47. 27:1–27:13, 2016.

[DHW12] A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance
for realistic curves in near linear time . Discrete Comput. Geom., 48(1): 94–127,
2012.

[GT88] H. N. Gabow and R. E. Tarjan. Algorithms for two bottleneck optimization
problems . J. Algorithms, 9(3): 411–417, 1988.

[HMW+20] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen,
D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus,
S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Ŕıo, M. Wiebe,
P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H.
Abbasi, C. Gohlke, and T. E. Oliphant. Array programming with NumPy .
Nature, 585(7825): 357–362, 2020.

[HR14] S. Har-Peled and B. Raichel. The Fréchet distance revisited and extended .
ACM Trans. Algo., 10(1): 3:1–3:22, 2014.

[LPS15] S. K. Lam, A. Pitrou, and S. Seibert. Numba: a llvm-based python jit compiler .
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in
HPC,

[Max23] Maxima. Maxima, a Computer Algebra System. Version 5.47.0 . https://
maxima.sourceforge.io/ , 2023.

[MP99] M. E. Munich and P. Perona. Continuous dynamic time warping for translation-
invariant curve alignment with applications to signature verification . Proceed-
ings of the International Conference on Computer Vision, Kerkyra, Corfu,
Greece, September 20-25, 1999, 108–115, 1999.

38

http://dx.doi.org/10.1007/s00454-017-9878-7
http://dx.doi.org/10.1007/s00454-017-9878-7
http://dx.doi.org/10.1016/J.COMGEO.2018.09.002
http://dx.doi.org/10.1016/J.COMGEO.2018.09.002
http://dx.doi.org/10.1145/3347146.3359111
http://dx.doi.org/10.1145/3347146.3359111
http://dx.doi.org/10.20382/JOCG.V12I1A4
http://dx.doi.org/10.20382/JOCG.V12I1A4
http://dx.doi.org/10.4230/LIPICS.STACS.2016.27
http://dx.doi.org/10.4230/LIPICS.STACS.2016.27
http://dx.doi.org/10.1007/s00454-012-9402-z
http://dx.doi.org/10.1007/s00454-012-9402-z
http://dx.doi.org/10.1016/0196-6774(88)90031-4
http://dx.doi.org/10.1016/0196-6774(88)90031-4
http://dx.doi.org/10.1038/s41586-020-2649-2
http://dx.doi.org/10.1145/2532646
http://dx.doi.org/10.1145/2833157.2833162
https://maxima.sourceforge.io/
https://maxima.sourceforge.io/
https://maxima.sourceforge.io/
http://dx.doi.org/10.1109/ICCV.1999.791205
http://dx.doi.org/10.1109/ICCV.1999.791205

[PGR+17] E. Pollonara, T. Guilford, M. Rossi, V. Bingman, and A. Gagliardo. Data from:
Right hemisphere advantage in the development of route fidelity in homing
pigeons . 2017.

[RKT+18a] S. Rotics, M. Kaatz, S. Turjeman, D. Zurell, M. Wikelski, N. Sapir, U. Eggers,
W. Fiedler, F. Jeltsch, and R. Nathan. Data from: Early arrival at breeding
grounds: causes, costs and a trade-off with overwintering latitude . 2018.

[RKT+18b] S. Rotics, M. Kaatz, S. Turjeman, D. Zurell, M. Wikelski, N. Sapir, U. Eggers,
W. Fiedler, F. Jeltsch, and R. Nathan. Early arrival at breeding grounds:
causes, costs and a trade-off with overwintering latitude . J. Animal Ecology,
87(6): 1627–1638, 2018.

[Wil08] B. Williams. Character Trajectories . UCI Machine Learning Repository. 2008.
[WO18] M. Werner and D. Oliver. ACM SIGSPATIAL GIS cup 2017: range queries

under fréchet distance . ACM SIGSPATIAL Special, 10(1): 24–27, 2018.
[ZFX+11] Y. Zheng, H. Fu, X. Xie, W.-Y. Ma, and Q. Li. Geolife GPS trajectory dataset

- User Guide . Geolife GPS trajectories 1.1. July 2011.

A. The elevation function
We need some standard properties of the elevation function. We prove some of them here,
so that our presentation would be self contained.

A.1. A helper lemma
Lemma A.1. for f : Rk → Rd an affine function, the function u(q) = ∥f(q)∥ is convex.

Proof: The proof is straightforward, and the reader is encouraged to skip reading it. Fix
any two points p′.q′ ∈ Rk, and consider the segment p′q′. We need to prove that h(t) =∥∥∥f((1 − t)p′ + tq′)

∥∥∥ is convex. Let p = f(p′) and q = f(q′). Since f is affine, we have that

h(t) =
∥∥∥f((1 − t)p′ + tq′)

∥∥∥ =
∥∥∥(1 − t)f(p′) + tf(q′)

∥∥∥ = ∥(1 − t)p + tq∥ =
√∑d

i=1 gi(t),

where gi(t) = ((1 − t)pi + tqi)2 = αit
2 + βit + γi, αi, βi, γi are constants, for i = 1, . . . , d,

p = (p1, . . . , pd), and q = (q1, . . . , qd). For any i, the function gi(t) is nonnegative. If αi = 0
then gi(t) = γi and then pi = qi. Otherwise, αi > 0 and gi(t) is a parabola. Let α = ∑

i αi,
β = ∑

i βi and γ = ∑
i γi. Consider the function g(t) = ∑d

i=1 gi(t) = αt2 + βt + γ. If, for
all i, pi = qi, then g(t) = γ, and the claim trivially holds. Otherwise, g(t) is a non-negative
parabola with α > 0, and since it has at most a single root, we have that β2 − 4αβ ≤ 0.

39

http://dx.doi.org/doi:10.5441/001/1.245kb7r6
http://dx.doi.org/doi:10.5441/001/1.245kb7r6
http://dx.doi.org/doi:10.5441/001/1.245kb7r6
http://dx.doi.org/doi:10.5441/001/1.v8d24552
http://dx.doi.org/doi:10.5441/001/1.v8d24552
http://dx.doi.org/https://doi.org/10.1111/1365-2656.12898
http://dx.doi.org/https://doi.org/10.1111/1365-2656.12898
http://dx.doi.org/https://doi.org/10.24432/C58G7V
http://dx.doi.org/10.1145/3231541.3231549
http://dx.doi.org/10.1145/3231541.3231549
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/

Now, we have

h′(t) = 2αt+ β

2
√
αt2 + βt+ γ

= h1(t)
h(t) for h1(t) = αt+ β/2,

and h′′(t) = h(t)g′(t) − h′(t)h1(t)
(h(t))2 = αh(t) − (h1(t))2/h(t)

(h(t))2 = (h(t))2 − (h1(t))2/α

(h(t))3/α
.

This implies that

sign(h′′(t)) = sign
(
(h(t))2 − (h1(t))2/α

)
= sign

(
αt2 + βt+ γ − αt2 − βt− β2/4α

)
= sign

(
γ − β2/4α

)
= sign

(
4αγ − β2

)
≥ 0,

since α > 0 and β2 − 4αγ ≤ 0. Which implies that h(·) is convex, and so is ∥f(·)∥.

A.2. Back to the elevation function
We are given two segments p0p1 and q0q1, where Lp = ∥p0p1∥ and Lq = ∥q0q1∥. Their
uniform parameterization is

f(s) = p0 + sp and g(t) = q0 + tq,

where p = (p1 −p0)/Lp and p = (p1 −p0)/Lq. The elevation function is

∀(s, t) ∈ [0, Lp] × [0, Lq] e(s, t) = ∥u0 + sp− tq∥ ,

where u0 = p0 − q0. Since the elevation function is the norm of an affine function, it is
convex, by Lemma A.1 .

The squared elevation function is

E(s, t) = (e(s, t))2 = ⟨u0 + sp− tq, u0 + sp− tq⟩
= ∥u0∥2 + 2 ⟨u0, sp− tq⟩ + s2 − 2st ⟨p,q⟩ + t2,

Figure A.1: The elevation function for two segments, and the minimum lines. See relevant
animations here .

40

https://frechet.xyz/examples/18

since ∥p∥2 = 1 and ∥q∥2 = 1. Its derivative along s and t respectively is

∂sE(s, t) = 2 ⟨u0,p⟩ + 2s− 2t ⟨p,q⟩
and ∂tE(s, t) = −2 ⟨u0,q⟩ − 2s ⟨p,q⟩ + 2t

In particular, let h(α) (resp. v(β)) be the s (resp. t) coordinate of the minimum of the
elevation function on the horizontal line t = α (resp. vertical line s = β). We have that h(α)
is the solution to the (linear) equation ∂sE(s, α) = 0 (resp. ∂tE(β, t) = 0). That is

h(α) = ⟨p,q⟩α− ⟨u0,p⟩ and v(β) = β ⟨p,q⟩ + ⟨u0,q⟩ .

Observation A.2. In particular, the edges connecting the left portal to the right portal,
and the edge connecting the bottom portal of a cell to its top portal, are both tracing these
minimum edges.

41

	Introduction
	Definitions
	Free space diagram and morphings
	Fréchet distance

	Background
	Variants of the Fréchet distance
	Critical events
	Algorithm engineering the Fréchet distance

	Our results
	Result I: A new algorithm for retractable discrete Fréchet
	Result II: A new distance and algorithm: VE-Fréchet
	Result III: New algorithm for the regular Fréchet distance
	Result IV: Computing the Fréchet distance quickly for real inputs
	Main contribution: Implementation in Julia and Python
	Additional results

	Significance

	Implementation and experiments
	Hardware and Implementations
	Julia
	Python
	C++

	Experiments
	Direct Fréchet distance computations
	Fréchet Decider

	Discussion

	The retractable Fréchet distance
	The retractable path in a directed graph
	The retractable discrete Fréchet distance
	The discrete Fréchet distance
	The retractable discrete Fréchet distance

	The VE-Fréchet distance
	Definition and basic algorithm
	Reachable complexity

	Basic properties of the VE Fréchet morphing/distance

	Computing the regular Fréchet distance
	Direct Monotonization
	How morphing encodes the motion.
	Monotonization via refinement

	Computing the regular Fréchet distance
	Speed-up via simplification
	Combining morphings

	Computing the exact Fréchet distance using simplification
	Morphing sensitive simplification
	Computing a lower-bound on the Fréchet distance
	Computing the exact Fréchet distance

	The sweep distance
	Definitions
	The sweep distance
	Computing a lower bound on the CDTW distance using the sweep distance
	Discussion of the two algorithms

	Fast output-sensitive simplification extractor
	Fast extractor
	A greedy simplification.

	Conclusions and future work
	The elevation function
	A helper lemma
	Back to the elevation function

